• Title/Summary/Keyword: stiffness adaptation

Search Result 20, Processing Time 0.017 seconds

Dynamic Changes depending on Adaptation to Assistive Joint Stiffness in Metatarsophalangeal Joint during Human Running (인체주행 시 중족지절 관절 보조 강성에의 적응에 따른 동역학적 변화 고찰)

  • Keonyoung Oh
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.57-65
    • /
    • 2024
  • Recently, several studies have been conducted to lower the cost of transport of human by adding external joint stiffness elements. However, it has not been clearly elucidated whether adaptation time is required for human subjects to adapt to the added external joint stiffness. In this study, carbon plates in the form of shoe midsoles were added to the metatarsophalangeal joint, and the lower limb joint torque and mechanical energy consumption were compared before and after a total of 5 sessions (2.5 weeks) of running. A total of 11 young healthy participants exhibited higher elastic energy storage in carbon plates in the fifth session compared to the first session, and lower power in the ankle joint. This suggests that a single training session may be insufficient to validate the efficiency effect of added joint stiffness, and the human body seems to increase the elastic energy stored in the assistive joint stiffness and its reutilization.

Hybrid dynamic control approach for constrained robot motion control with stiffness adaptability (제한 동작 로봇의 강성도 적응성을 갖는 하이브리드 동적 제어에 관한 연구)

  • Lim, Mee-Seub;Lim, Joon-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.705-713
    • /
    • 1999
  • In this paper, we propose a new motion and force control methodology for constrained robots as an approach of hybrid discrete-continuous dynamical system. The hybrid dynamic system modeling of robotic manipulation tasks with constraints is presented, and the hybrid system control architecture for unconstrained and constrained motion system with parametric uncertainties is synthesized. The optimal reference stiffness of robot manipulator is generated by the hybrid automata as a discrete state system and the control behavior of constrained system which has poor modeling information and time-varying constraint function is improved by the constrained robots as a continuous state system. The performance of the proposed constrained motion control system is successfully evaluated via experimental studies to the constraint tasks.

  • PDF

A Compliance Control Method for Robot Manipulators Using Nonlinear Stiffness Adaptation (비선형 강성 조절 방법을 이용한 로봇 매니퓰레이터의 컴플라이언스 제어 방법)

  • Kim, Byoyng-Ho;Oh, Sang-Rok;Suh, Il-Hong;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.703-709
    • /
    • 2000
  • This paper proposes a compliance control strategy for the robot manipulators accidentally interact-ing with an unknown environment. In this proposed method each in the diagonal stiffness matrix corre-sponding to the task coordinate in a Cartesian space is adaptively adjusted during contact along the corresponding axis based on the contact force with its environment. This method can be used for both unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end-effector. The experimental results show the effectiveness of the proposed method by employing a two link direct drive manipulator interacting with an unknown environment.

  • PDF

A Position/Force Control of Robotic Manipulators with Parameter Adaptation (파라미터 적응을 이용하는 로보트 매니퓰레이터의 위치/힘 제어)

  • Yu, Dong-Young;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.408-410
    • /
    • 1992
  • An adaptive hybrid position/force controller for constrained manipulator with uncertain dynamic model parameters and environment stiffness is presented. In this paper, the compliance frame model is constructed by independent positions and forces to be controlled. The adaptive controller based on this compliance frame dynamic model is designed. Lyapunov theory is used for controller design and Stability analysis.

  • PDF

Adaptive length SMA pendulum smart tuned mass damper performance in the presence of real time primary system stiffness change

  • Contreras, Michael T.;Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.219-233
    • /
    • 2014
  • In a companion paper, Pasala and Nagarajaiah analytically and experimentally validate the Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) on a primary structure (2 story steel structure) whose frequencies are time invariant (Pasala and Nagarajaiah 2012). In this paper, the ALP-STMD effectiveness on a primary structure whose frequencies are time varying is studied experimentally. This study experimentally validates the ability of an ALP-STMD to adequately control a structural system in the presence of real time changes in primary stiffness that are detected by a real time observer based system identification. The experiments implement the newly developed Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) which was first introduced and developed by Nagarajaiah (2009), Nagarajaiah and Pasala (2010) and Nagarajaiah et al. (2010). The ALP-STMD employs a mass pendulum of variable length which can be tuned in real time to the parameters of the system using sensor feedback. The tuning action is made possible by applying a current to a shape memory alloy wire changing the effective length that supports the damper mass assembly in real time. Once a stiffness change in the structural system is detected by an open loop observer, the ALP-STMD is re-tuned to the modified system parameters which successfully reduce the response of the primary system. Significant performance improvement is illustrated for the stiffness modified system, which undergoes the re-tuning adaptation, when compared to the stiffness modified system without adaptive re-tuning.

Adaptation accuracy and mechanical properties of various denture base resins: a review (다양한 레진 의치상의 적합도와 기계적 특성)

  • Lee, Jung-Hwan;Lee, Chung-Jae;Lee, Hae-Hyoung
    • The Journal of the Korean dental association
    • /
    • v.57 no.12
    • /
    • pp.747-756
    • /
    • 2019
  • This paper reviews the adaptation accuracy and mechanical properties of currently used denture processing systems with base resin materials and introduces the latest research on the development of antimicrobial denture base resins. Poly(methyl methacrylate) has been successfully used as a dental denture base resin material by the compress-molding method and heat polymerization for a long time, but recently, new processing techniques, injection molding-methods or fluid-resin technique are also used for fabricating denture base. However, studies indicated that there was no difference between the injectionmolding and the conventional compression-molding method in terms of adaption accuracy of denture base. The fluid-resin fabrication and one injection-molding systems exhibited better adaptation accuracy than the other processing methods. Resin denture bases in the oral cavity may undergo midline fractures due to flexural fatigue from repeated masticatory loading. For those patients, impact resistant denture base resins are recommended to prevent denture fracture during service. Thermoplastic denture base resins can be helpful for patients suffering from allergic reaction to resin monomers with a soft-fit, however, thermoplastic resins with low stiffness can irritate gum tissues and accelerate abnormal alveolar ridge resorption. Moreover, due to low chemical durability in oral cavity, those should be used for a limited period of time.

  • PDF

Seismic protection of smart base-isolated structures using negative stiffness device and regulated damping

  • Bahar, Arash;Salavati-Khoshghalb, Mohsen;Ejabati, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.359-371
    • /
    • 2018
  • Strong seismic events commonly cause large drift and deformation, and functionality failures in the superstructures. One way to prevent functionality failures is to design structures which are ductile and flexible through yielding when subjected to strong ground excitations. By developing forces that assist motion as "negative stiffness forces", yielding can be achieved. In this paper, we adopt the weakening and damping method to achieve a new approach to reduce all of the structural responses by further adjusting damping phase. A semi-active control system is adopted to perform the experiments. In this adaptation, negative stiffness forces through certain devices are used in weakening phase to reduce structural strength. Magneto-rheological (MR) dampers are then added to preserve stability of the structure. To adjust the voltage in MR dampers, an inverse model is employed in the control system to command MR dampers and generate the desired control forces, where a velocity control algorithm produces initial required control force. An extensive numerical study is conducted to evaluate proposed methodology by using the smart base-isolated benchmark building. Totally, nine control systems are examined to study proposed strategy. Based on the numerical results of seven earthquakes, the use of proposed strategy not only reduces base displacements, base accelerations and base shear but also leads to reduction of accelerations and inter story drifts of the superstructure. Numerical results shows that the usage of inverse model produces the desired regulated damping, thus improving the stability of the structure.

The Analysis of Pulse Wave Velocity of Jeju female divers (제주 해녀의 맥파전도속도 분석)

  • Lee, Han-Young
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.515-521
    • /
    • 2015
  • In this study, we tried to analyze arterial stiffness of Jeju female divers who diver into cold water without the assistance of oxygen. For this purpose we measured pulse wave velocity and ankle-brachial index of Jeju female divers and same aged females who didn't have any cardiovascular risk for comparing the vascular stiffness. The results were the following : First, the light-femoral pulse wave velocity of Jeju female divers was significantly lower than normal women of the same ages. Second, Jeju female divers's ABI showed higher tendency than normal same aged women. These result showed that Jeju female divers' body had been completed for adaptation to low temperature and high pressure water environment through a long-term immersion activities in old age, as well as due to higher physical activity levels of Jeju female divers peripheral vascular resistance was not reduced.

A Study on the Robust Motion Control Technology of Articulated Robot Arm (다관절 로봇 아암의 강인한 모션 제어방법에 관한 연구)

  • Ha, Eon-Tae;Kim, Hyun-Geon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.119-128
    • /
    • 2015
  • In this paper, we propose a new motion control technology to design robust control system of industrial robot. The system modeling of robotic manipulation tasks with constraints is presented, and the control architecture for unconstrained and constrained motion system with parametric uncertainties is synthesized. The optimal reference of robot manipulator is generated by the reference controller as a discrete state system and the control behavior of constrained system which has poor modeling information and time-invariant constraint function is improved motion control system is successfully evaluated by experiment to the desired tasks.

Reliability Evaluation of Air Spring for Railway Vehicle (철도차량용 공기스프링의 신뢰성 평가)

  • 김완두;우창수;최경진
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.807-819
    • /
    • 2002
  • The air spring is used in secondary suspension system for railway vehicle to reduce and absorb the vibration and noise. In this paper, the characteristics and durability test was conducted in laboratory by using servo hydraulic fatigue testing system to evaluate the reliability. And to guarantee the adaptation of this air spring, the ride comfort and air pressure variation were measured in train test. The experimental results show that the characteristics and durability of domestic development productions are obtained the good results and the stiffness of the air spring which had become 6 year over increased. Also, the dynamic characteristics of domestic and existing product agree well the results obtained.

  • PDF