• 제목/요약/키워드: stiffness EI

검색결과 14건 처리시간 0.016초

지오그리드로 보강된 철도노반의 한계속도에 관한 연구 (Critical Speed Analysis of Geogrid-Reinforced Rail Roadbed)

  • 신은철;이규진;오영인
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.534-539
    • /
    • 2001
  • This paper presents the critical speed analysis of geogrid-reinforced rail roadbeds on soft soil. A rail roadbed on soft ground must be designed to avoid intolerable stress in the underlying soil and to give sufficient support for the rail system. At high speeds, the deformation of rail systems will gain dynamic amplification, and reach excessive values as a certain speed, here termed critical speed is approached. The elastic Winkler foundation model was used to predict the critical speed of geogrid-reinforced rail roadbeds on soft soil and the model properties were determined by the in-situ cyclic plate load test. Based on the parametric study of elastic beam on Winkler foundation model, the critical speed increase with the increase of the flexural risidity of subgrade EI and the stiffness coefficient of Winkler foundation k. From the in-situ cyclic load tests and analysis of elastic beam on Winkler foundation model, the critical speed increase with increase in number of reinforced layer and non-dimensional value for depth of first geogrid layers and the thickness of reinforced rail roadbed u/d.

  • PDF

동적 탄소성 지진응답해석에 의한 고층 벽식 아파트의 내진성능 검토 (Earthquake Resistant Performance of a High-rise Shear Wall Apartment Based on Nonlinear Time History Response Analysis)

  • 박성수
    • 한국지진공학회논문집
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 1999
  • 본 논문의 목적은 탄소성 지진 응답해석을 수행하여 고층 벽식 아파트의 내진성능을 평가하는 것이다 먼저 구조물을 3차원 입체 모델화 하여 정적 탄소성 해석을 수행하고 층강성 및 항복 충전단력을 평가한 후 그 결과를 이용하여 집준 질량계 모델을 사용한 시간 이력 지진 응답해석을 수행한다 탄소성 이력 모델로는 bi-linear 모델 및 Clough 모델을 입력 지진동파형으로는 4종류의 기록 지진동 띠 Centro 1940 NS, Taft 1952 EW Hachinohe 1968 NSm Kobe 1995 NS를 사용하고 입력 지진동의 강도는 최대 지반속도치 12Kine이 되도록 크기를 조절하여 입력한다 탄소성 지진응답 해석결과 고층 벽식 아파트는 진도 5정도의 지진동 크기에서 전층에소성 변형이 발생하여 취약한 내진성능을 보여준다.

  • PDF

드릴링 센타용 애폭시-그래나이트재 컬럼의 개발과 구조물 특성 실험 (Development of Drilling Center Column made of Epoxy-granite Material and Experimental Study on it's Structural Characteristics)

  • Won, S.T.;Kim, J.H.;Lee, H.W.;Maeng, H.Y.
    • 한국정밀공학회지
    • /
    • 제12권1호
    • /
    • pp.87-96
    • /
    • 1995
  • A new fungivle material named Epoxy-Granite composite is applied to the column structure of drilling center in order to investigate the advanced dynamic charateristics comparing with a conventional cast iron material. The dimensions of new column structure are adjusted to keep the same stiffness (EI value) and the manufacturing conditions are formulated based on the preceeding research experience about the development of Epoxy-Granite structural material. The two kinds of experiments are set up, one of which is for the measurement of natural mode and frequency using experimental modal analysis, and the other one is for the measurement of vibration amplitude during idling operation of a machine tool. The comparison of maximum accelerance values at each natural frequency of bending mode shows a Epoxy-Granite column have larger modal damping ratios(over 2times) than a cast iron column. The vibration amplitude of Epoxy-Granite column measrued on the bed, motor base, and top of column are also much smaller (up to 12%) than the case of cast iron column. It is therefore confirmed that a Epoxy-Granite material exhibits a good anti- vibrational propderty even if it is used under the actual operational environments of machine tool as a practical structural element.

  • PDF

Analytic responses of slender beams supported by rotationally restrained hinges during support motions

  • Ryu, Jeong Yeon;Kim, Yong-Woo
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2939-2948
    • /
    • 2020
  • This paper presents an analytic solution procedure of the rotationally restrained hinged-hinged beam subjected to transverse motions at supports based on EBT (Euler-Bernoulli beam theory). The EBT solutions are compared with the solutions based on TBT (Timoshenko beam theory) for a wide range of the rotational restraint parameter (kL/EI) of slender beams whose slenderness ratio is greater than 100. The comparison shows the followings. The internal loads such as bending moment and shearing force of an extremely thin beam obtained by EBT show a good agreement with those obtained by TBT. But the discrepancy between two solutions of internal loads tends to increase as the slenderness ratio decreases. A careful examination shows that the discrepancy of the internal loads originates from their dynamic components whereas their static components show a little difference between EBT and TBT. This result suggests that TBT should be employed even for slender beams to consider the rotational effect and the shear deformation effect on dynamic components of the internal loads. The influence of the parameter on boundary conditions is examined by manipulating the spring stiffness from zero to a sufficiently large value.