• Title/Summary/Keyword: stiffness

Search Result 10,230, Processing Time 0.035 seconds

On the Bearing-to-Bearing Variability in Experimentally Identified Structural Stiffnesses and Loss Factors of Bump-Type Foil Thrust Bearings under Static Loads (범프 타입 포일 스러스트 베어링의 정하중 구조 강성 및 손실 계수 차이에 관한 실험적 연구)

  • Lee, Sungjin;Ryu, Keun;Jeong, Jinhee;Ryu, Solji
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.332-341
    • /
    • 2020
  • High-speed turbomachinery implements gas foil bearings (GFBs) due to their distinctive advantages, such as high efficiency, lesser part count, and lower weight. This paper provides the test results of the static structural stiffnesses and loss factors of bump-type foil thrust bearings with increasing preload and bearing deflection. The focus of the current work is to experimentally quantify variability in structural stiffnesses and loss factors among the four test thrust bearings with identical design values and material of the bump and top foil geometries using the same (open-source) fabrication method. A simple test setup, using a rigidly mounted non-rotating shaft and thrust disk, measures the bearing bump deflections with increasing static loads on the test bearing. The inner and outer diameters of the test bearings are 41 mm and 81 mm, respectively. The loss factor, best-representing energy dissipation in the test bearings, is estimated from the area inside the local hysteresis loop of the load versus the bearing deflection curve. The measurements show that structural stiffnesses and loss factors of the test bearings significantly rely on applied preloads and bearing deflections. Local structural stiffnesses of the test bearings increase with applied preloads but decrease with bearing deflections. Changes of loss factors are less sensitive to applied preloads and bearing deflections compared to those of structural stiffnesses. Up to 35% variability in static load structural stiffnesses is found between bearings, while up to 30% variability in loss factors is found between bearings.

Influence of soil model complexity on the seismic response of shallow foundations

  • Alzabeebee, Saif
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.193-203
    • /
    • 2021
  • The time-history finite element analysis is usually used to evaluate the seismic response of shallow foundations. However, the literature lacks studies on the influence of the soil constitutive model complexity on the seismic response of shallow foundations. This study, thus, aims to fill this gap by investigating the seismic response of shallow foundation resting on dry silica sand using the linear elastic (LE) model, elastic-perfectly-plastic (EPP) model, and hardening soil with small strain stiffness (HS small) model. These models have been used because it is intended to compare the results of a soil constitutive model that accurately captures the seismic response of the soil-structure interaction problems (which is the HS small model) with simpler models (the LE and EPP models) that are routinely used by practitioners in geotechnical designs. The results showed that the LE model produces a very small seismic settlement value which is approximately equal to zero. The EPP model predicts a seismic settlement higher than that produced using the HS small model for earthquakes with a peak ground acceleration (PGA) lower than 0.25 g for a relative density of 45% and 0.40 g for a relative density of 70%. However, the HS small model predicts a seismic settlement higher than the EPP model beyond the aforementioned PGA values with the difference between both models increases as the PGA rises. The results also showed that the LE and EPP models predict similar trend and magnitude of the acceleration-time relationship directly below the foundation, which was different than that predicted using the HS small model. The results reported in this paper provide a useful benchmark for future numerical studies on the response of shallow foundations subjected to seismic shake.

Natural Frequency Characteristics of Vertically Loaded Barrettes (수직하중을 받는 Barrette 말뚝의 고유진동수 특성)

  • Lee, Joon Kyu;Ko, Jun Young;Choi, Yong Hyuk;Park, Ku Byoung;Kim, Jae Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, an analytical model is proposed for assessing the natural frequency of barrettes subjected to vertical loading. The differential equation governing the free vibration of rectangular friction piles embedded in inhomogeneous soil is derived. The governing equation is numerically integrated by Runge-Kutta technique and the eigenvalue of natural frequency is computed by Regula-Falsi method. The numerical solutions for the natural frequency of barrettes compare well with those obtained from finite element analysis. Illustrated examples show that the natural frequencies increase with an increase of the cross-sectional aspect ratio, the friction resistance ratio and the soil stiffness ratio, and decrease with an increase of the friction aspect ratio, the slenderness ratio and the load factor, respectively.

Bacterial Osteomyelitis Induced by Morganella morganii in a Bearded Dragon (Pogona vitticeps)

  • Kwon, Jun;Kim, Sang Wha;Kim, Sang Guen;Kim, Hyoun Joong;Giri, Sib Sankar;Park, Se Chang
    • Journal of Veterinary Clinics
    • /
    • v.37 no.6
    • /
    • pp.342-344
    • /
    • 2020
  • Bacterial osteomyelitis-or bacterial infection of the bone-is common in reptiles. Unfortunately, its treatment is challenging despite advances in diagnostic and medical technologies. Herein, we present the case of a sexually mature female bearded dragon (Pogona vitticeps) with left forelimb elbow joint stiffness. We diagnosed the reptile with a eft elbow joint traumatic structural abnormality based on gross examination and evaluation of radiographs. Treatment with clindamycin and cephalexin for bacterial infection failed and the reptile died. Necropsy revealed the causative bacteria as Morganella morganii. Treatment of osteomyelitis is typically focused against Staphylococcus aureus as it the most common cause of traumatic bone infection. However, M. morganii, the causative bacterium in this case, has a natural resistance to clindamycin and cephalexin. Recently, these bacteria have begun to appear in clinical reports, more commonly as the causative organisms of bone infections. M. morganii should be considered as a potential cause of infection. Furthermore, antibiotic treatment in such cases should be based on bacterial culture and susceptibility tests.

Response Characteristics of Forced Vibration of High Damping Vehicle Passing the Bumped Barrier (둔턱을 진행하는 고감쇠 차량의 강제진동 응답특성)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.132-139
    • /
    • 2021
  • The response characteristics of the forced vibration generated when the high-damped vehicle pass the bumped barrier was studied, and in particular, the response behavior of displacement, velocity and acceleration was analyzed for the forced vibration model. In addition, in order to obtain responses such as displacement, velocity, and acceleration, a numerical analysis technique of the Runge-Kutta-Gill method was performed in time domain. The response was successfully obtained in detail under several high damping conditions. As a numerical analysis result, the response of the vehicle was obtained by considering the vehicle body to which the impulse impact was applied. Also, the analysis result was compared with the experimental result in order to verify the validity of vehicle model. The amplitude and natural frequency of the vehicle were considered and analyzed. The Nyquist diagram of the vehicle model was also obtained and the relationship could be analyzed. And the vibration response was analyzed on different mass, damping and stiffness.

Research Trends on the Acupotomy Treatment for Knee Osteoarthritis : A Systematic Review (무릎 골관절염의 도침 치료에 대한 연구 동향 : 체계적 문헌 고찰)

  • Hong, Su Min;Yoon, Kwang Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.6
    • /
    • pp.285-298
    • /
    • 2020
  • This study aimed to review clinical studies about Acupotomy used for Knee Osteoarthritis. We searched the following 12 online databases (KISS, NDSL, RISS, OASIS, Earticle, Kmbase, MEDLINE/Pubmed, Cochrane library, Ebscohost, Ovid, CNKI, Wanfang), to find randomized controlled trials that used Acupotomy for knee osteoarthritis. The methodological quality of randomized controlled trials were assessed by using the Cochrane risk of bias tool and meta-analyses were performed. 16 randomized controlled trials were included. Total number of patients was 1169. The average duration of treatment was 3.14 weeks and most of the patients were treated once a week. The major treatment sites were ligaments, muscles, and tender nodules and the most used evaluation tool was the efficiency. We selected 4 studies and meta-analyzed them. All of the studies performed Acupotomy+sodium hyaluronate injection as a treatment group, and sodium hyaluronate injection as a control group. Meta-analysis showed positive results for Acupotomy+sodium hyaluronate injection in terms of efficiency rate compared to sodium hyaluronate injection. Also Meta-analysis showed positive results for Acupotomy+sodium hyaluronate injection in terms of WOMAC (pain, stiffness, function) compared to sodium hyaluronate injection. In this study, we reviewed studies about Acupotomy used for knee osteoarthritis. The studies showed that Acupotomy can significantly effective on knee osteoarthritis. But according to Cochrane Risk of Bias (RoB) evaluation method, most of the study's risk of bias was unclear. Threrefore, more high-quality studies will be needed.

Centrifuge modelling of rock-socketed drilled shafts under uplift load

  • Park, Sunji;Kim, Jae-Hyun;Kim, Seok-Jung;Park, Jae-Hyun;Kwak, Ki-Seok;Kim, Dong-Soo
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.431-441
    • /
    • 2021
  • Rock-socketed drilled shafts are widely used to transfer the heavy loads from the superstructure especially in mountainous area. Extensive research has been done on the behavior of rock-socketed drilled shafts under compressive load. However, little attention has been paid to uplift behavior of drilled shaft in rock, which govern the overall behavior of the foundation system. In this paper, a series of centrifuge tests have been performed to investigate the uplift response of rock-socketed drilled shafts. The pull-out tests of drilled shafts installed in layered rocks having various strengths were conducted. The load-displacement response, axial load distributions in the shaft and the unit skin friction distribution under pull-out loads were investigated. The effects of the strength of rock socket on the initial stiffness, ultimate capacity and mobilization of friction of the foundation, were also examined. The results indicated that characteristics of rock-socket has a significant influence on the uplift behavior of drilled shaft. Most of the applied uplift load were carried by socketed rock when the drilled shaft was installed in the sand over rock layer, whereas substantial load was carried by both upper and lower rock layers when the drilled shaft was completely socketed into layered rock. The pattern of mobilized shaft friction and point where the maximum unit shaft friction occurred were also found to be affected by the socket condition surrounding the drilled shaft.

Numerical Model to Evaluate Resistance against Direct Shear Failure and Bending Failure of Reinforced Concrete Members Subjected to Blast Loading (폭발하중을 받는 철근콘크리트 부재의 직접전단 파괴 및 휨 파괴 저항성능 평가를 위한 수치해석 모델 개발)

  • Ju, Seok Jun;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.393-401
    • /
    • 2021
  • In this paper, we proposed a numerical model based on moment-curvature, to evaluate the resistance of reinforced concrete (RC) members subjected to blast loading. To consider the direct shear failure mode, we introduced a dimensionless spring element based on the empirical direct shear stress-slip relation. Based on the dynamic increase factor equations for materials, new dynamic increase factor equations were constructed in terms of the curvature rate for the section which could be directly applied to the moment-curvature relation. Additionally, equivalent bending stiffness was introduced in the plastic hinge region to consider the effect of bond-slip. To verify the validity of the proposed model, a comparative study was conducted against the experimental results, and the superiority of this numerical model was confirmed through comparison with the analytical results of the single-degree of freedom model. Pressure-impulse (P-I) diagrams were produced to evaluate the resistance of members against bending failure and direct shear failure, and additional parametric studies were conducted.

Clinical Characteristics of Trauma-Related Chronic Osteomyelitis in 3 Wild Raccoon Dogs (Nyctereutes procyonoides)

  • Ha, Minjong;Ahmed, Sohail;Lee, Do Na;Han, Janghee;Yoon, Junghee;Yeon, Seong-Chan
    • Journal of Veterinary Clinics
    • /
    • v.39 no.3
    • /
    • pp.131-137
    • /
    • 2022
  • Osteomyelitis typically occurs because of the direct inoculation of bacteria or fungi after penetrating trauma or surgical contamination or, by extension, from soft tissue infection. Osteomyelitis is rarely reported in wildlife animals, though severe chronic osteomyelitis cases do exist in wildlife owing to the scarcity of medical support in the wild environment. This report describes three cases of chronic osteomyelitis in wild raccoon dogs related to trauma. The typical symptoms of three reported cases were ataxia, stiffness, muscle atrophy, and lethargy. All three cases were relevant to traumatic or severe external injury, and skin infestation caused by ectoparasites was apparent on an ocular inspection. In the radiographic examination, diffuse sites of osteolytic lesions and remarkable periosteal responses were demonstrated around the injured limb in all three cases. Apparent neutrophilia with a left shift, lymphocytosis, and monocytosis in hematological examinations generally indicated chronic infection as shown in case 1 and 3. Treatment was attempted with broad-spectrum antibiotics and non-steroidal anti-inflammatory drugs, such as amoxicillin/clavulanic acid, enrofloxacin, clindamycin, and meloxicam. These treatment options helped improve the overall prognosis of chronic osteomyelitis, but the outcomes did not meet the treatment goal entirely. Osteomyelitis can be extremely challenging to treat, particularly in wild animals, because of their distinctive traits, such as masking phenomenon and uncontrolled exposure to ectoparasites. Earlier diagnosis with a radiographic examination, hematological examinations, and careful patient monitoring, followed by prolonged antibiotic therapy and restricted exercise, are the key factors leading to a better prognosis.

Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill (조적채움벽을 갖는 RC 벽-슬래브 골조의 내진성능 연구)

  • Kim, Chan Ho;Lee, Seung Jae;Heo, Seok Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • This study investigated the seismic performance of reinforced concrete (RC) wall-slab frames with masonry infills. Four RC wall-slab frames with or without masonry infill were tested under cyclic loading. The RC frames were composed of in-plane and out-of-plane walls and top and bottom slabs. For masonry infill walls, cement bricks were stacked applying mortar paste only at the bed joints, and, at the top, a gap of 50 mm was intentionally left between the masonry wall and top RC slab. Both sides of the masonry walls were finished by applying ordinary or fiber-reinforced mortars. The tests showed that despite the gap on top of the masonry walls, the strength and stiffness of the infilled frames were significantly increased and were different depending on the direction of loading and the finishing mortars. During repeated loading, the masonry walls underwent horizontal and diagonal cracking and corner crushing/spalling, showing a rocking mode inside the RC wall-slab frame. Interestingly, this rocking mode delayed loss of strength, and as a result, the ductility of the infilled frames increased to the same level as the bare frame. The interaction of masonry infill and adjacent RC walls, depending on the direction of loading, was further investigated based on test observations.