• Title/Summary/Keyword: stiffening

Search Result 366, Processing Time 0.023 seconds

Nonlinear Finite Element Analysis of Containment Vessel by Considering the Tension stiffening Effect

  • Lee, Hong-Pyo;Choun, Young-Sun;Seo, Jeong-Moon;Shin, Jae-Chul
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.512-527
    • /
    • 2004
  • This paper describes the finite element (FE) analysis results of a 1/4 scale model of a prestressed concrete containment vessel (PCCV) by considering the tension stiffening effect, which is a result of the bond effect between the concrete and the steel. The tension stiffening model is assumed to be an exponential form based on the relationship between the average stress and the average strain of the concrete. The objective of the present FE analysis is to evaluate the ultimate internal pressure capacity of the PCCV, as well as its failure mechanism, when the PCCV model is subjected to a monotonous internal pressure beyond is design pressure capacity. With the commercial code ABAQUS, the FE analysis used two concrete failure criteria: a 2-dimensional axi-symmetric model with modified Drucker-Prager failure criteria and a 3-dimensional model with a damaged plasticity mod디. The results of our FE analysis on the ultimate pressure capacity and failure modes of PCCV have a good agreement with the experimental data.

Experimental study on all-bolted joint in modularized prefabricated steel structure

  • Wu, Zhanjing;Tao, Zhong;Liu, Bei;Zuo, Heng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.613-620
    • /
    • 2020
  • The research study is focuses on a form of all-bolted joint with the external ring stiffening plate in the prefabricated steel structure. The components are bolted at site after being fabricated in the factory. Six specimens were tested under cyclic loading, and the effects of column axial compression ratio, concrete-filled column, beam flange sub plate, beam web angle cleats, and spliced column on the failure mode, hysteretic behavior and ductility of the joints were analyzed. The results shown that the proposed all-bolted joint with external ring stiffening plate performed high bearing capability, stable inflexibility degradation, high ductility and plump hysteretic curve. The primary failure modes were bucking at beam end, cracking at the variable section of the external ring stiffening plate, and finally welds fracturing between external ring stiffening plate and column wall. The bearing capability of the joints reduced with the axial compression ratio increased. The use of concrete-filled steel tube column can increase the bearing capability of joints. The existence of the beam flange sub plate, and beam web angle cleat improves the energy dissipation, ductility, bearing capacity and original rigidity of the joint, but also increase the stress concentration at the variable section of the external reinforcing ring plate. The proposed joints with spliced column also performed desirable integrity, large bearing capacity, initial stiffness and energy dissipation capacity for engineering application by reasonable design.

Influence of Tension Stiffening Effect on Deflection and Crack Width in RC Members (철근콘크리트 부재의 처짐과 균열폭에 대한 인장증강효과의 영향)

  • Choi, Seung-Won;Yang, Jun-Ho;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.761-768
    • /
    • 2010
  • When cracks occur in reinforced concrete structures, a steel carries all tensile force at crack section, while the concrete between cracks carries a part of the tensile force due to bond, so that the steel is less elongated. This is called the tension-stiffening effect, that plays an important role in verification of a serviceability limit state. But it is a complicated work to use a complex strain distribution between cracks, therefore an average strain is used to calculate deflection and crack width. In Eurocode 2, tension-stiffening effect expressed in the first order form or the second order form is used in calculating an average curvature for deflection. In this study for a flexural member deflection and crack width are calculated using various models for the tension-stiffening effect and the results are compared with the values of Eurocode 2 and KCI provisions. As results, the predicted values using the second order form are appeared to be well agreed with the experimental values and it could secure more analytical consistency.

A Study on the Optimum Design of Stiffened Plates under Combined Loads (조합하중이 작용하는 보강평판의 최적설계 연구)

  • 원종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1059-1068
    • /
    • 1990
  • The minimum weight design for the simply-supported eccentrically stiffened plates subjected to combined loads is studied according to the stiffening configuration. The optimal programming is accomplished by formulating the design requirements in terms of a mathematical programming problem, and by using the gradient projection algorithm. The Huber type equilibrium equation is used as the governing equation for the overall buckling. The overall buckling of stiffened plates and the local buckling of the unstiffened plate between stiffeners and the stiffeners themselves are used as behavior constraints. Results of design examples for the orthogonally stiffening case compared with those of the other study support that the present study is feasible. Design examples for the symmetrically oblique stiffening case are presented and the results indicate that a significant improvement in design efficiency may be achieved through symmetrically oblique stiffening compared to the orthogonal stiffening under the combined loading condition.

Tension Stiffening Effect Considering Cover Thickness in Reinforced Concrete Tension Members (피복두께를 고려한 철근콘크리트 인장부재의 인장증강효과)

  • Lee, Gi-Yeol;Kim, Min-Joong;Kim, Woo;Lee, Hwa-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.791-797
    • /
    • 2011
  • This paper presents the test results of 12 direct tensile specimens to investigate the effect of cover thickness on the tension stiffening behavior in axially loaded reinforced concrete tensile members. Six concrete cover thickness ratios are selected as a main experimental parameter. The results showed that, as cover thickness became thinner, more extensive split cracking along the reinforcement occurred and transverse crack spacing became smaller, making the effective tensile stiffness of thin specimens at the stabilized cracking stage to be much smaller than that of thick specimens. This observation is not implemented in the current design provisions, in which the significant reduction of tension stiffening effect can be achieved by applying thinner cover thickness. Based on the present results, a modified tension stiffening factor is proposed to account for the effect of the cover thickness.

Indirect Crack Controling Method Affected by Variation of Material Characteristics in Reinforced Concrete Flexural Members (재료 특성 변화에 따른 철근콘크리트 휨부재의 간접균열제어 방법 연구)

  • Choi, Seung-Won;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.87-98
    • /
    • 2011
  • Crack formations are inevitable in reinforced concrete structures. To estimate crack widths, empirical formulae are used widely and indirect crack controling methods of limiting bar spacing and bar diameter are also used due to their simplicity. In EC2, the characteristic crack width is calculated by multiplying maximum crack spacing and average strain. In this study, limit values of maximum bar spacing and bar diameter are examined as the material characteristics are varied. Two models of tension stiffening effect and maximum crack spacing and their effects are evaluated. The obtained results are compared with the values obtained using KCI method. The results showed that a significant difference is found when two tension stiffening effect are employed, and an under-estimation is found when 2nd order tension stiffening effect and maximum crack spacing limit from Part II were implemented. Therefore, a rational indirect crack control method attained using the tension stiffening effect of 2nd order form is needed. Also, a consistency in serviceabiliy analysis in flexural members needs to be secured. In order to achieve these goals, two crack controling models are suggested.

Curvature-based analysis of concrete beams reinforced with steel bars and fibres

  • Kaklauskas, Gintaris;Sokolov, Aleksandr;Shakeri, Ashkan;Ng, Pui-Lam;Barros, Joaquim A.O.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.349-365
    • /
    • 2022
  • Steel fibre-reinforced concrete (SFRC) is an emerging class of composite for construction. However, a reliable method to assess the flexural behaviour of SFRC structural member is in lack. An analytical technique is proposed for determining the moment-curvature response of concrete beams reinforced with steel fibres and longitudinal bars (R/SFRC members). The behaviour of the tensile zone of such members is highly complex due to the interaction between the residual (tension softening) stresses of SFRC and the tension stiffening stresses. The current study suggests a transparent and mechanically sound method to combine these two stress concepts. Tension stiffening is modelled by the reinforcement-related approach assuming that the corresponding stresses act in the area of tensile reinforcement. The effect is quantified based on the analogy between the R/SFRC member and the equivalent RC member having identical geometry and materials except fibres. It is assumed that the resultant tension stiffening force for the R/SFRC member can be calculated as for the equivalent RC member providing that the reinforcement strain in the cracked section of these members is the same. The resultant tension stiffening force can be defined from the moment-curvature relation of the equivalent RC member using an inverse technique. The residual stress is calculated using an existing model that eliminates the need for dedicated mechanical testing. The proposed analytical technique was validated against test data of R/SFRC beams and slabs.

Effect of Concrete on the Tension Behavior of RC Members (콘크리트가 RC 인장부재의 인장거동에 미치는 영향)

  • Hong, Chang-Woo;Kim, Nam-Yun;Yun, Kyong-Ku;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.145-151
    • /
    • 1997
  • This paper presents evaluation results of the tensile behavior of reinforced high strength concrete. The effects of different sizes of reinforcing bar, ranging from D22 to D29, on the formation of cracks was investigated. Two different strength concretes, $270kg/cm^2$ and $550kg/cm^2$, were used in the specimens to investigate the influence if concrete strength on tension stiffening. In the present investigation a method was developed to obtain reliable load-deformation behavior in tension. The experimental results show that (1)high-strength concrete members exhibited larger amounts of tension stiffening than the companion normal-strength concrete members, (2) as the bar diameter increases, the beneficial influence of high-strength concrete on tension stiffening is reduced.

  • PDF

Analytical Modeling for Reinforced Concrete Beam Deflections Using Layered Finite Elements (층상 유한요소를 이용한 철근콘크리트 보의 처짐 해석모델)

  • 최봉섭;권영웅
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.131-137
    • /
    • 1999
  • The use of higher strength materials with the strength methed of design has resulted in more slender member and shallower sections. For this reason, it is necessary to satisfy the requirements of serviceability even though the structural safety is the most important limit state. This paper is only concerned with the control of deflections in the serviceability. In this study, an analytical model is presented to predict the deflections of reinforced concrete beams to given loading and environmental conditions. This model is based on the finite element approach in which a finite element is generally divided into a number of stiffening effect due to cracking, creep and shrinkage. Comparisons are made with available measured deflections reported by others to assess the capability of the layered beam model. The calculated values of instantaneous and long-term deflection show good agreement with experimental results in the range of tension stiffening parameter $\beta$ between 2.5 and 3.0.

Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar

  • Rahdar, H.A.;Ghalehnovi, M.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.139-154
    • /
    • 2016
  • Since the concrete strength around the reinforcement rebar affects the tension stiffening, the tension stiffening effect of ultra high performance concrete on the concrete members reinforced by steel rebar is examined by testing the specimens with circular cross section with the length 850 mm reinforced by a steel rebar at the center of a specimen's cross section in this research. Conducting a tensile test on the specimens, the cracking behavior is evaluated and a curve with an exponential descending branch is obtained to explain the post-cracking zone. In addition, this paper proposes an equation for this branch and parameters of equation is obtained based on the ratio of cover thickness to rebar diameter (c/d) and reinforcement percentage (${\rho}$).