• Title/Summary/Keyword: stiffening

Search Result 367, Processing Time 0.019 seconds

The Effects Where the Stroke Shoes Which Use Functional Electric Stimulation Goes Mad to Walking of the Hemiplegia (기능적 전기자극 치료기를 이용한 중풍구두가 편마비 환자의 보행에 미치는 영향)

  • Kim, Jeong-Seon;Park, Ji-Whan
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • Purpose: An objective analysis and observations were to be done on hemiplegia patients that are wearing a walking support device, Stroke shoes. Their improvements in walking pace, the reduction of distance between the two knee joint, the increase of curve angle of the knee joint and their steps and the reduction of ankle joint upon swing phase were analyzed using a 20 walking analyzer. Methods: An examination was carried out to see the patients' communication skill and independent walking and then let them walk with the Stroke shoes on to get results before and after wearing it. Simi Reality Motion Systems GmbH (Germany, 2007) was used to analyze the results regarding knee joint and ankle joint angle changes of sagitta plane and coronal plane, stepping distances, distances between the knees and walking pace. Results: 1. The articulation angle of ankle joint during swing phase decreased and knee joint has shown a statistically significant increase in such value(p<0.05). 2. Only knee joint showed a significant increase in articulation angle during heel strike(p<0.05). 3. Knee joint showed a significant increase in articulation angle during toe off(p<0.05). 4. The distance between the two knees as well as their foot steps significantly decreased compared with when Stroke shoes were not worn(p<0.05). 5. Stroke shoes with FES have shown positive effects on the patients in improving their walking styles overall. (p<0.05). Conclusion: There was an improvement in rotation walking pattern by a reduction in the distance between the knees after wearing Stroke shoes with FES. Plantar flexion reduced that occurred in ankle joint during walking and flexion angle increased in knee joint, both of which improved foot drop which was a major problem in hemiplegia patients. Also it is believed that the device will have some positive influences on knee joint stiffening paralysis to aid in improving inefficient walking phases.

  • PDF

A Study On Structural Behavior of Anchor Pile Precast Retaining Wall with Screw Shape Flange (나선형 플렌지가 설치된 앵커파일 프리캐스트 옹벽의 구조적 거동에 관한 연구)

  • Choi, Seung-Seon;Ahn, Tae-Bong;Kim, Woo-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.129-138
    • /
    • 2013
  • In this study, Anchor Pile Precast Retaining Wall (APC) with screw shape flange was investigated and the results were arranged for designing APC specifications. Since precast materials require special care when they are manufactured, carried or treated, more accurate design and analysis of optimized dimension are needed : thus moment distribution of front foot was checked. Through full-scale field test, form and optimal stiffening shape were obtained and through fracture test with real load, applicable load was reasonably calculated. Research result in this thesis could be used as guideline or standard of designing and constructing Anchor Pile Precast Retaining Wall with screw shape flange.

Variability of Deflections for Reinforced Concrete Flat Plate (철근 콘크리트 플랫 플레이트 처짐의 변동성 평가)

  • Kim, Min Sook;Jo, Eunsun;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.543-549
    • /
    • 2014
  • The deflection of reinforced concrete members can be highly variable, due to uncertainties in the characteristics of the concrete. However, current standards do not take this problem into account, instead recommending only the minimum thickness and maximum allowable deflections based on empirical data. This paper is aimed at evaluation deflection variabilities by applying a probabilistic analysis model to a finite element analysis model. To evaluate the variabilities of deflections, a Monte Carlo simulation, which incorporated the eight parameters related to concrete, reinforcement, member size, and tension stiffening. The results showed that lager spans were more sensitive to the deflection due to loads and that as the applied live loads were increases and the slab thickness were decreased, the deflection variability increased.

Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners

  • Zand, Ahmed W. Al;Badaruzzaman, W.H. Wan;Ali, Mustafa M.;Hasan, Qahtan A.;Al-Shaikhli, Marwan S.
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.123-139
    • /
    • 2020
  • The tube outward local buckling of Concrete-Filled Steel Tube (CFST) beam under high compression stress is still considered a critical problem, especially for steel tubes with a slender section compared to semi-compact and compact sections. In this study, the flexural performance of stiffened slender cold-formed square tube beams filled with normal concrete was investigated. Fourteen (14) simply supported CFST specimens were tested under static bending loads, stiffened with different shapes and numbers of steel stiffeners that were provided at the inner sides of the tubes. Additional finite element (FE) CFST models were developed to further investigate the influence of using internal stiffeners with varied thickness. The results of tests and FE analyses indicated that the onset of local buckling, that occurs at the top half of the stiffened CFST beam's cross-section at mid-span was substantially restricted to a smaller region. Generally, it was also observed that, due to increased steel area provided by the stiffeners, the bending capacity, flexural stiffness and energy absorption index of the stiffened beams were significantly improved. The average bending capacity and the initial flexural stiffness of the stiffened specimens for the various shapes, single stiffener situations have increased of about 25% and 39%, respectively. These improvements went up to 45% and 60%, for the double stiffeners situations. Moreover, the bending capacity and the flexural stiffness values obtained from the experimental tests and FE analyses validated well with the values computed from equations of the existing standards.

Topology Optimization of General Plate Structures by Using Unsymmetric Layered Artificial Material Model (비대칭 층을 가지는 인공재료모델을 이용한 일반 평판구조물의 위상최적화)

  • Park, Gyeong-Im;Lee, Sang-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.5
    • /
    • pp.67-74
    • /
    • 2007
  • The unsymmetrically layered artificial material model is consistently introduced to find the optimum topologies of the plate structures. Reissner-Mindlin (RM) plate theory is adopted to formulate the present 9-node plate element considering the first-order shear deformation of the plates. In the topology optimization process, the strain energy to be minimized is employed as the objective function and the initial volume of structures is adopted as the constraint function. In addition, the resizing algorithm based on the optimality criteria is used to update the hole size introduced in the proposed artificial material model. Several numerical examples are rallied out to investigate the performance of the proposed technique. From numerical results, the proposed topology optimization techniques are found to be very effective to produce the optimum topology of plate structures. In particular, the proposed unsymmetric stiffening layer model make it possible to produce more realistic stiffener design of the plate structures.

  • PDF

Analysis for Nonlinear Behavior of Concrete Panel Considering Steel Bar Buckling (철근 좌굴을 고려한 콘크리트 패널의 비선형 거동에 대한 해석)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.130-137
    • /
    • 2018
  • Many constitutive models for concrete have been developed to predict the nonlinear behavior of concrete members considerably. The constitutive model for reinforcing bar that include the tension stiffening effect due to the bond characteristics between steel bars and concrete is being studied but the bilinear model is generally used. It was found that the buckling of the longitudinal reinforcing bars is controlled the nonlinear behavior of hybrid precast concrete panel, which is being developed for core wall. In this study, the constitutive models that can consider the embedding and buckling effects of reinforcing bar are investigated and a new model combing these constitutive models is proposed. In order to verify the proposed model, the analysis results are compared with experimental results of the concrete wall and hybrid precast concrete panel. The analysis of embedding-effect-only modeling predicted that the deformation increases continually without the decrease in the load carrying capacity. However, the analysis results of proposed model showed good agreement with some experimental results, thus verifying the proposed computational model.

Evaluation of Concrtet Properties Using Silicon-Based Repellent (실리콘기반 침투강화제를 사용한 콘크리트의 내구특성 평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung;Lee, Byung-Jae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • Currently, the most commonly used decontamination agent in the country is calcium chloride, and the use of decontamination agents nationwide is on the rise due to climate change in the country. The deicing agent, aimed at deicing snow, is sprayed and the chloride is frozen and thawed by the dissolved surface water, causing various damages such as deterioration to the concrete. Therefore, in this study, the reactive urethane polymer was manufactured to coat concrete surface protection material, which is a method that prevents moisture from externally penetrating by applying to concrete surfaces, and the mixing agent was selected through the size control of molecules and surface modification, and the properties of penetrant stiffening agents and the application method of concrete was evaluated.

A Study on Development of 3-D Simulator for H-Beam Robot Cutting and Optimization of Cutting Using the Simulator (H-beam 로봇 절단용 3차원 시뮬레이터의 개발과 이를 이용한 절단 최적화에 관한 연구)

  • Park, Ju-Yong;Kim, Yong-Uk
    • Journal of Welding and Joining
    • /
    • v.30 no.4
    • /
    • pp.44-48
    • /
    • 2012
  • H-beam used for stiffening the upper structure of ocean plant is cut in the various shapes. The cutting process of the H-beam is done manually and requires a long time and high cost. Therefore, automation of H-beam cutting is an important task. This research aims to develop a 3-D simulator to build the automatic H-beam cutting system and to determine the optimal cutting method. The automatic H-beam cutting system composes of 6 robots including 2 cutting robots hang to a crane and 1 conveyer. The appropriate system layout for covering the various sizes and types of H-beam was tested and determined using the simulator. The H-beam cutting system uses a hybrid type of plasma and gas cutting because of special cutting shapes of H-beam. The cutting area of each cutting method should be properly divided according to the size and shape of H-beam to shorten the total cutting time. Additionally the collision between a robot and a robot or a robot and H-beam should be avoided. The optimal cutting method for the shortest cutting time without the collision could be found for the various cutting conditions by use of the simulator. 2 simulation samples shows the availability of the simulator to find the optimal cutting method.

Predicting the Nonlinear Behavior of Reinforced Concrete Membrane Elements Subjected to Reversed Cyclic Loading (반복하중을 받는 철근콘크리트 막요소의 비선형거동에 대한 예측)

  • 이정윤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.7-13
    • /
    • 2002
  • The behaviors of the reinforced concrete membrane elements are expected by Navier's three principles of the mechanics of materials. The adopted cyclic stress-strain curves of concrete consist of seven different unloading and loading stages in the compressive zone and six other stages in the tensile zone. The curves took into account the softening of concrete that was influenced by the tensile strain in the perpendicular direction of cracks. The stress-strain relationships for steel bar embedded in concrete subjected to reversed cyclic forces considered the tension stiffening effect and Baushinger effect. The predicted results of the analysis based on Navier's principles were in good agreement with the observed shear stress-strain relationships as well as transverse and longitudinal strains.

Connections between RC beam and square tubed-RC column under axial compression: Experiments

  • Zhou, Xu-Hong;Li, Bin-Yang;Gan, Dan;Liu, Jie-Peng;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.453-464
    • /
    • 2017
  • The square tubed-reinforced concrete (TRC) column is a kind of special concrete-filled steel tube (CFST) columns, in which the outer thin-walled steel tube does not pass through the beam-column joint, so that the longitudinal steel reinforcing bars in the RC beam are continuous through the connection zone. However, there is a possible decrease of the axial bearing capacity at the TRC column to RC beam connection due to the discontinuity of the column tube, which is a concern to engineers. 24 connections and 7 square TRC columns were tested under axial compression. The primary parameters considered in the tests are: (1) connection location (corner, exterior and interior); (2) dimensions of RC beam cross section; (3) RC beam type (with or without horizontal haunches); (4) tube type (with or without stiffening ribs). The test results show that all specimens have relatively high load-carrying capacity and satisfactory ductility. With a proper design, the connections exhibit higher axial resistance and better ductility performance than the TRC column. The feasibility of this type of connections is verified.