• 제목/요약/키워드: stiffened thickness

검색결과 108건 처리시간 0.021초

Analysis of stiffened plates composed by different materials by the boundary element method

  • Fernandes, Gabriela R.;Neto, Joao R.
    • Structural Engineering and Mechanics
    • /
    • 제56권4호
    • /
    • pp.605-623
    • /
    • 2015
  • A formulation of the boundary element method (BEM) based on Kirchhoff's hypothesis to analyse stiffened plates composed by beams and slabs with different materials is proposed. The stiffened plate is modelled by a zoned plate, where different values of thickness, Poisson ration and Young's modulus can be defined for each sub-region. The proposed integral representations can be used to analyze the coupled stretching-bending problem, where the membrane effects are taken into account, or to analyze the bending and stretching problems separately. To solve the domain integrals of the integral representation of in-plane displacements, the beams and slabs domains are discretized into cells where the displacements have to be approximated. As the beams cells nodes are adopted coincident to the elements nodes, new independent values arise only in the slabs domain. Some numerical examples are presented and compared to a wellknown finite element code to show the accuracy of the proposed model.

보강재의 수를 포함한 보강판 구조물의 동특성의 최적변경 (The Optimum Modification of Dynamic Characteristics of Stiffened Plate Structure Including the Number of Stiffener)

  • 박성현;고재용
    • 한국항해학회지
    • /
    • 제25권4호
    • /
    • pp.461-469
    • /
    • 2001
  • The purpose of this paper is the optimum modification of dynamic characteristics of stiffened plate structure including the number of stiffener. This paper shows the optimum structural modification method by dynamic sensitivity analysis and quasi-least squares method and considers it's validity. In the method of the optimization, finite element method, sensitivity analysis and optimum structural modification method are used. The change of natural frequency and total weight are made to be an objective function. Thickness of plate, the number of stiffener and cross section moment of stiffener become a design variable. The dynamic characteristics of stiffened plate structure is analyzed using finite element method. Next, rate of change of dynamic characteristics by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using optimum structural modification method. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure including the number of stiffener.

  • PDF

국부좌굴과 뒤틀림좌굴이 발생하는 종방향 보강재로 보강된 강판의 압축강도 (The Compressive Strength of Longitudinally Stiffened Plates Undergoing Local and Distortional Buckling)

  • 박호상;서상정;권영봉
    • 한국강구조학회 논문집
    • /
    • 제22권3호
    • /
    • pp.219-228
    • /
    • 2010
  • 본 논문에는 압축력을 받는 국부좌굴, 뒤틀림좌굴 및 두 좌굴의 혼합좌굴이 발생하는 종방향 보강재가 부착된 강판의 거동 및 극한 강도에 대한 실험적인 연구를 서술하였다. 압축력을 받는 보강판의 경우 서브패널의 폭-두께비와 보강재의 휨강성에 따라서 국부좌굴, 뒤틀림좌굴 또는 두 좌굴의 혼합형태의 좌굴이 발생하게 되고, 상당한 크기의 후좌굴강도가 발현되어 보강판의 극한강도를 지배하게 된다. 보강재의 휨강성과 보강재로 구분된 서브패널의 폭-두께비가 다른 두께 4.0mm, 공칭항복강도 235MP인 SM400 강판으로 제작된 보강판의 중심압축실험을 수행하고 유한요소해석결과와 비교하여 검증하였다. 실험 결과에 근거하여 보강판의 극한강도를 예측할 수 있는 직접강도법을 적용한 설계압축강도식을 제안하였다. 제안된 직접강도법은 뒤틀림좌굴 또는 국부좌굴과 뒤틀림좌굴이 혼합하여 발생하는 종방향 보강재로 보강된 강판의 극한강도를 적절하게 예측할 수 있는 것으로 판단되었다.

고유진동수의 간이 추정식을 이용한 보강판 구조물의 동특성의 최적변경에 관한 연구 (A Study on Optimum Modification of Dynamic Characteristics of Stiffened Plate Using Simplified Equation of Natural Frequency)

  • 박성현;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.48-58
    • /
    • 2002
  • There is a purpose of this study for the proposal of the optimum technique utilized for the vibration design initial step. The stiffened plate structure for the ship hull is made for analysis model. To begin with, dynamic characteristics of stiffened plate structure is analysed using FEM. Main vibrational mode of the structure is decided in the analytical result of FEM. The simplified equation on the natural frequency of the main vibrational mode is induced. Next, sensitivity analysis is carried out using the simplified equation, and rate of change of dynamic characteristics is calculated. Then, amount of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of panel, cross section moment of stiffener and girder become a design variable. The validity of the optimization method using simplified equation is examined. It is shown that the result effective in the optimum modification for natural frequency of the stiffened plate structure.

충돌에 의한 소성변형을 갖는 보강판의 잉여강도 해석 (Redundancy Analysis of Stiffened Panel with Plastic Deformation due to Collision)

  • 염철웅;노인식
    • 대한조선학회논문집
    • /
    • 제52권2호
    • /
    • pp.161-169
    • /
    • 2015
  • According to SOLAS Regulation XII/6.5.3 and IMO GBS functional requirement(IMO, 2010), the structural redundancy of multi-bay stiffened panel in cargo area of bulk carrier should be provided enough in order to endure the initial design load though one bay of the stiffened panel is damaged due to plastic deformation or fatigue crack. To satisfy structural redundancy, Harmonized Common Structural Rules (hereinafter CSR-H, IACS, 2014) proposed to use 1.15 instead of 1.0 for buckling usage factor of stiffened panel in cargo area. This paper shows that buckling usage factor in CSR-H for structural redundancy is somewhat conservative considering the ultimate strength calculated by using nonlinear FEA for the damaged condition which is only one bay's plastic deformation due to colliding by weigh object like a bucket. Also, this paper presents that increasing of plate thickness only is more effective to get enough structural redundancy.

Ductile crack initiation evaluation in stiffened steel bridge piers under cyclic loading

  • Fujie, Wataru;Taguchi, Miki;Kang, Lan;Ge, Hanbin;Xu, Bin
    • Steel and Composite Structures
    • /
    • 제36권4호
    • /
    • pp.463-480
    • /
    • 2020
  • Although detailed shell analysis is suitable to predict the ductile crack initiation life of steel members, such detailed method adds time expense and complexity. In order to simply predict the ductile crack initiation life of stiffened steel bridge piers, a total of 33 cases are simulated to carry out the parametric analyses. In the analysis, the effects of the width-to-thickness ratio, slenderness ratio, plate thickness and so on are considered. Both shell analyses and beam analyses about these 33 cases are conducted. The plastic strain and damage index obtained from shell and beam analyses are compared. The modified factor βs is determined based on the predicted results obtained from both shell and beam analyses in order to simulate the strain concentration at the base corner of the steel bridge piers. Finally, three experimental results are employed to verify the validity of the proposed method in this study.

Vibroacoustic analysis of stiffened functionally graded panels in thermal environments

  • Ashish K. Singh;Anwesha Pal;Shashi Kumar;Anuja Roy;Atanu Sahu
    • Structural Engineering and Mechanics
    • /
    • 제89권5호
    • /
    • pp.437-452
    • /
    • 2024
  • Functionally graded materials (FGMs) have gained substantial attention from researchers due to their exceptional strength and thermal resistance. Their utilization in the aviation and automobile industries has significantly improved the efficiency of various structural components. Moreover, stiffened panels find wide applications in aerospace and automobile structures and these panels are frequently exposed to extreme environments. It is from this perspective that our research is focused on analysing the vibroacoustic response of stiffened functionally graded panels subjected to external dynamic excitations in a thermal environment. In the present research work, a finite element model is developed to conduct the dynamic analysis of functionally graded stiffened panels using the first-order shear deformation theory. Subsequently, a boundary element based model is also developed and coupled with the finite element model to investigate the sound radiation behaviour of those panels in a thermal environment. The material properties of FG stiffened panels are considered as temperature dependent, while the thermal environment is assumed to be acting as linearly varying through the panel's thickness. The present investigation aim to compare the vibroacoustic responses of different panels due to stiffener orientations, material compositions, power law indices and plate thicknesses at various temperatures. The research findings highlight the significant impact of addition of stiffeners, its orientation and material compositions on the sound radiation characteristics of these panels under thermal environments. The present numerical model can easily be employed for analysing the sound radiation behaviour of other types of flat or curved stiffened panels having arbitrary geometry and boundary conditions.

리브 제원을 고려한 평강 리브 보강판의 직교이방성 휨 강성 수정 계수 (The Modified Coefficient of the Orthotropic Flexural Rigidity for Stiffened Plates with Rectangular Ribs Considering the Dimensions of Ribs)

  • 주석범
    • 한국강구조학회 논문집
    • /
    • 제19권2호
    • /
    • pp.161-170
    • /
    • 2007
  • 본 연구에서는 직교이방성 판 해석의 정확도 문제를 개선하기 위하여 평강 리브를 갖는 보강판에 대하여 리브 제원을 고려한 직교이방성 휨 강성 수정 계수를 제안하고자 하였다. 이를 위하여 먼저, 직교이방성 휨 강성과 최대 처짐에 대하여 보강판 제원에 따른 민감도 분석을 실시하였으며, 보강판의 직교이방성 휨 강성 수정 계수에 대한 매개변수 연구를 수행하였다. 연구 결과, 수정 계수의 비율은 판 두께와 상관없이 리브 높이, 간격, 두께별로 하나의 함수로 표현 가능함을 알 수 있었으며, 이러한 수정 계수의 비율 함수로부터 간편하게 수정 휨 강성을 산정할 수 있음을 알 수 있었다. 지지 조건, 변장비, 리브 배치 및 재하 크기가 다른 여러 가지 보강판에 계수 함수를 적용한 결과, 참고 문헌에 비하여 직교이방성 판 해석의 정확도가 향상됨을 알 수 있었다. 따라서, 본 연구에서 제안한 계수 함수식을 사용하면 평강 리브를 갖는 보강판의 직교이방성 판 해석 시 간편하게 상당한 정확도의 결과를 얻을 수 있을 것으로 판단된다.

복합적층 원통형 쉘의 단부보강 효과 연구 (A Study on Edge Reinforcement Effect of Cylindrical Shells with Composite Laminate)

  • 손병직;지효선;장석윤
    • 복합신소재구조학회 논문집
    • /
    • 제3권2호
    • /
    • pp.47-54
    • /
    • 2012
  • In this study, composite laminate cantilever type cylindrical shells with edge-stiffeners are analyzed. A versatile 4-node flat shell element which is useful for the analysis of shell structures is used. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. Two models by load conditions are considered. Load type A and B are loaded by point load at the free edge and line load respectively. A various parameter examples are presented to obtain proper stiffened length and stiffened thickness of edge-stiffeners. It is shown that the thickness of shell can be reduced minimum 30% by appropriate edge-stiffeners.

Structural optimization of stiffener layout for stiffened plate using hybrid GA

  • Putra, Gerry Liston;Kitamura, Mitsuru;Takezawa, Akihiro
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.809-818
    • /
    • 2019
  • The current trend in shipyard industry is to reduce the weight of ships to support the reduction of CO2 emissions. In this study, the stiffened plate was optimized that is used for building most of the ship-structure. Further, this study proposed the hybrid Genetic Algorithm (GA) technique, which combines a genetic algorithm and subsequent optimization methods. The design variables included the number and type of stiffeners, stiffener spacing, and plate thickness. The number and type of stiffeners are discrete design variables that were optimized using the genetic algorithm. The stiffener spacing and plate thickness are continuous design variables that were determined by subsequent optimization. The plate deformation was classified into global and local displacement, resulting in accurate estimations of the maximum displacement. The optimization result showed that the proposed hybrid GA is effective for obtaining optimal solutions, for all the design variables.