• 제목/요약/키워드: stiffened cylinders

검색결과 18건 처리시간 0.021초

수압을 받는 원환보강원통의 최종강도에 대한 초기 형상결함과 잔류응력의 영향 (Effect of Initial Shape Imperfection and Residual Stress on the Ultimate Strength of Ring-Stiffened Cylinders under Hydrostatic Pressure)

  • 조상래;김승민
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.139-143
    • /
    • 2001
  • Ring-stiffened cylinders are widely used as the pressure hull of submarines and underwater vehicles. For large ring-stiffened cylinders cylindrical shells are fbricated by cold rolling of flat plates and then welding of curved shells. After forming cylinders ring-stiffeners are welded on th the cylinders. Due to these cold roiling and welding initial shape imperfections and residual stresses exists in fabricated ring-stiffened cylinders. It is well known that the initial shape and material imperfections affect the ultimate strength of ring-stiffened cylinders significantly. In this paper previous researches on the effects of initial shape imperfections and residual stresses are briefly reviewed Recently a numerical analysis computer program was developed to predict the ultimate strength of ring-stiffened cylinders subjected to hydrostatic pressure, which is based on the Dynamic Relaxation technique. This program was employed to numerically investigate those effects. The numerical predictions were substantiated with relevant experimental results.

  • PDF

상용소프트웨어를 이용한 원환보강 원통의 최종강도 해석(II) (Ultimate Strength Analysis of Ring-stiffened Cylinders Using Commercial Softwares(II))

  • 박치모;이승훈
    • 한국해양공학회지
    • /
    • 제16권1호
    • /
    • pp.36-40
    • /
    • 2002
  • Despite the frequent use of ring-stiffened cylinders as a submarine pressure hull or members of various types of offshore structure, their ultimate strength analysis methods have not been well established because of their complex structural characteristics. This paper has established the method how to use commercial softwares based on the finite element method to implement the ultimate strength analysis of ring-stiffened cylinders covering both types of initial imperfection, i.e. initial deformation and initial stress by combining two separately offered functions of common commercial finite element softwares, linear elastic buckling analysis and nonlinear stress analysis. Developed method was applied to one of the world-widely used commercial softwares. ABAQUS for the analysis of ring stiffened cylinders. This paper ends with some useful information about the imperfection sensitivity of ultimate strength ring stiffened cylinders.

상용소프트웨어를 이용한 원환보강 원통의 최종강도 해석(II) (Ultimate Strength Analysis of Ring-stiffened Cylinders Using Commercial Softwares(II))

  • 박치모;이승훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.114-118
    • /
    • 2001
  • Despite the frequent use of ring-stiffened cylinders as a submarine pressure hull or members of various types of offshore sutructures, their ultimate strength analysis methods have not been well established because of their complex structural characteristics. This paper has established the method how to use commercial softwares based on the finite element method to implement the ultimate strength analysis of ring-stiffened cylinders covering both types of initial imperfections, I. e. initial deformation and initial stress by combining two separately offered functions of common commercial finite element softwares, linear elastic buckling analysis and nonlinear stress analysis. Developed method was applied to one of the world-widely used commercial softwares, ABAQUS for the analysis of ring-stiffened cylinders. This paper ends with some useful information about the imperfection sensitivity of ultimate strength of ring-stiffened cylinders.

  • PDF

상용소프트웨어를 이용한 원환보강 원통의 최종강도 해석(I) (Ultimate Strength Analysis of Ring-stiffened Cylinders Using Commercial Softwares)

  • 박치모;이승훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.271-274
    • /
    • 2000
  • Despite the increasing necessity of accurate estimation of ring-stiffened cylinders' ultimate strength, the complex structural behavior of cylinders has made their design mainly depend on empirical formulas mostly based on insufficient test data rather than theoretical background. This paper has developed the imperfection method which enables the ultimate strength analysis of buckling sensitive structures by combining two general functions of common commercial finite element softwares, linear elastic buckling analysis and nonlinear stress analysis. Developed method was applied to two of the world most renowned commercial softwares, MSC/NASTRAN and ABAQUS, for the analysis of ring-stiffened cylinders and unexpectedly big difference in their analysis results was found. This tells that many widely used commercial softwares has their different strong points and week points and the choice of commercial software should be cautiously made after thorough inspection. This paper ends with some useful information about which of the aforementioned two softwares is more appropriate respectively for linear elastic buckling analysis and ultimate strength analysis of ring-stiffened cylinders.

  • PDF

상용소프트웨어를 이용한 원환보강 원통의 최종강도 해석(I) (Ultimate Strength Analysis of Ring-stiffened Cylinders Using Commercial softwares (I))

  • 박치모;이승훈
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.120-123
    • /
    • 2001
  • Despite the increasing necessity of accurate estimation of ring-stiffened cylinders'ultimate strength, the complex structural behavior of cylinders has made their design mainly depend on empirical formulas mostly based on limited test data rather than theoretical background. This paper has developed the imperfection method which enables the ultimate strength analysis of buckling-sensitive structures by combining two separate functions covered by common commercial finite element softwares, which are linear elastic buckling analysis and nonlinear stress analysis. Developed method was applied to two of the world most renowned softwares, MSC/NASTRAN and ABAQUS, for the analysis of ring-stiffened cylinders and unexpectedly big difference in their analysis results was found. This tells that many widely used commercial softwares have their different strong points and weak points and the choice of commercial software should be cautiously made after thorough inspection. This paper ends with some useful information about which of the two aforementioned softwares is more respectively for the linear elastic buckling analysis and the ultimate strength analysis of ring-stiffened cylinders.

  • PDF

Ultimate Strength Analysis of Ring-stiffened Cylinders with Initial Imperfections( I )

  • PARK CHI-MO;PARK DONG-MIN
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.48-56
    • /
    • 2003
  • This paper has developed an efficient nonlinear finite element method that covers both initial deformations and initial stresses of general distribution in calculating the ultimate strength of ring-stiffened cylinders. The developed method and two widely-used commercial codes (NASTRAN and ABAQUS) were simultaneously applied to the same analysis model within the extent of those commercial codes' coverage to check the validity of the present method. After the validity check, it was used for parametric studies for more general cases of initial stress distribution, which produced some useful information about the imperfection sensitivity of the ultimate strength of ring-stiffened cylinders.

Ultimate Strength Analysis of Ring-stiffened Cylinders with Initial Imperfections(I)

  • Park, Chi-Mo;Park, Dong-Min
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제6권1호
    • /
    • pp.51-59
    • /
    • 2003
  • This paper has developed an efficient nonlinear finite element method that covers both initial deformations and initial stresses of general distribution in calculating the ultimate strength of ring-stiffened cylinders. The developed method and two widely-used commercial codes (NASTRAN and ABAQUS) were simultaneously applied to the same analysis model within the extent of those commercial codes' coverage to check the validity of the present method. After the validity check, it was used for parametric studies for more general cases of initial stress distribution, which produced some useful information about the imperfection sensitivity of the ultimate strength of ring-stiffened cylinders.

  • PDF

Inelastic general instability of ring-stiffened circular cylinders and cones under uniform external pressure

  • Ross, C.T.F.
    • Structural Engineering and Mechanics
    • /
    • 제5권2호
    • /
    • pp.193-207
    • /
    • 1997
  • Experimental tests are described on three ring stiffened machined circular cylinders and three ring stiffened machined circular cones, which were tested to destruction under uniform external pressure. All six vessels failed by inelastic general instability. The experiments showed that the vessels initially deformed plastically at mid-bay in the circumferential direction, and this caused the circumferential tangent modulus to become much less than the elastic Young's modulus, causing the vessels to fail through plastic general instability at pressures much less than that predicted by elastic theory. Based on a thinness ratio, two semi-empirical design charts are provided, which are intended to be used for design purposes in conjunction with the finite element method and a plastic reduction factor.

균일한 외압을 받는 원환보강 원통구조의 비선형 좌굴 특성 (Nonlinear Buckling Characteristics of Ring-stiffened Circular Cylinders under Uniform External Pressure)

  • 안당;김수영;신성철;정보영;구윤회
    • 한국해양공학회지
    • /
    • 제26권2호
    • /
    • pp.79-84
    • /
    • 2012
  • This study aimed to analyze the nonlinear buckling of ring-stiffened circular cylinders under uniform external pressure, e.g. hydrostatic pressure, considering material nonlinearity and initial imperfection. In the present study, we analyzed the collapse pressure of pressure vessels using ANSYS Workbench, which is a framework of finite element methods. First, linear buckling analysis is performed to find collapse modes of the model. Second, scaling the first mode shape with small factor, geometric model is pre-deformed. And then, by analyzing the nonlinear buckling of the pre-deformed shape, the collapse pressure is estimated. To verify the validity of the analyses, we compared the results with Ross' experimental results. Finally, we applied it to ring-stiffened circular cylindrical shell of the pressure hull of a small submarine.

Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure

  • Muttaqie, Teguh;Thang, Do Quang;Prabowo, Aditya Rio;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.431-443
    • /
    • 2019
  • The present paper illustrates a numerical investigation on the failure behaviour of ring-stiffened cylinder subjected to external hydrostatic pressure. The published test data of steel welded ring-stiffened cylinder are surveyed and collected. Eight test models are chosen for the verification of the modelling and FE analyses procedures. The imperfection as the consequences of the fabrication processes, such as initial geometric deformation and residual stresses due to welding and cold forming, which reduced the ultimate strength, are simulated. The results show that the collapse pressure and failure mode predicted by the nonlinear FE analyses agree acceptably with the experimental results. In addition, the failure mode parameter obtained from the characteristic pressure such as interframe buckling pressure known as local buckling pressure, overall buckling pressure, and yield pressure are also examined through the collected data and shows a good correlation. A parametric study is then conducted to confirm the failure progression as the basic parameters such as the shell radius, thickness, overall length of the compartment, and stiffener spacing are varied.