• 제목/요약/키워드: stiff system

검색결과 158건 처리시간 0.034초

실물대 목업실험에 의한 슬라이딩스텝 철골계단의 진동 및 구조성능 평가 (Evaluation of Vibration and Structural Performance of an Innovative Sliding Step Steel Stair Using Full-Scale Mock-up Test)

  • 김성용;이철호;김나은;조성상;정운옥
    • 한국강구조학회 논문집
    • /
    • 제26권6호
    • /
    • pp.511-522
    • /
    • 2014
  • 본 연구에서는 주거용 및 사무용 계단시공의 작업공정의 단순화 및 시공품질 향상을 목적으로 개발된 혁신적인 계단 시스템인 슬라이딩스텝 철골계단의 진동 및 구조성능 평가를 수행하였다. 슬라이딩스텝 철골계단은 각형 강재 스트링거와 시공오차를 흡수할 수 있도록 설계된 스트링거 연결재 및 계단벽체 시공이 용이하도록 벽체 반대방향으로 이동이 가능한 슬라이딩 스텝으로 구성되어 있다. 하지만 철골계단의 경우 철골 접합부의 구조적 안전성 확보와 더불어, 비교적 경량에 저감쇠인 철골재 사용으로 인한 낮은 진동성능이 발현될 수 있기 때문에 진동성능에 대한 확보를 파악하는 것이 필수적으로 요구된다. 이에 본 연구에서는 진동성능 및 구조적 안전성 확보여부를 파악하기 위해 실물대 목업실험을 실시하였다. 진동성능 및 중량으로 인한 경제성 등을 종합적으로 판단하기 위해 콘크리트를 채운 스트링거와 콘크리트를 채우지 않은 스트링거를 교체해가며 각 경우에 대한 주거용 및 사무용 계단의 진동성능을 평가하였다. 또한 각 용도별로 한 개의 계단을 선정한 후, 재하실험을 통해 철골 접합부의 구조적 안전성과 스트링거 중앙부의 잔류 처짐 및 사용성 검토를 수행하였다. 실물대목업실험 결과 접합부 시스템의 경우 사용하중의 160%인 극한하중에 대해서도 탄성상태를 유지하며 재하실험 후에도 어떠한 균열이나 이상이 발견되지 않는 등 충분한 강성과 강도를 확보하고 있음을 확인하였다. 또한 스트링거 중앙부 처짐은 주거용/사무용 계단 모두 역시 동일한 하중조건 하에서 사용성에 문제가 없을 정도의 미미한 수준의 최대처짐과 잔류처짐이 발생하였으며, 최대하중이 가해질 때까지 스트링거가 탄성상태를 유지하는 등 설계하중을 지지할 수 있는 충분한 내력을 보유한 것으로 평가되었다. 진동성능 검토 결과 총 일곱 개의 스트링거 타입 중 다섯 개의 타입이 북미기준와 유럽기준에서 제시하는 기준의 허용치를 만족함을 확인하였다.

백강잠으로부터 분리한 항균물질의 항생제 내성균에 대한 효과 (Effects of an Antimicrobial Substance from Bombycis corpus on Antibiotic Resistant Microbes)

  • 이현우;엄정선;고미경;김미성;은재순;전훈;임재윤
    • 약학회지
    • /
    • 제51권4호
    • /
    • pp.253-258
    • /
    • 2007
  • Bombycis corpus, a batryticated silkworm and white-stiff silkworm, is an oriental drug consisting of the dried larva of silkworm, dead and stiffened due to the infection of Beauveria. An peptidyl antimicrobial molecule was purified from B. corpus by reverse phase-column chromatography and HPLC. Its molecular weight was determined to be 2295.45 by using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Its antimicrobial activity was diminished by trypsin digestion. It exhibited a broad antimicrobial spectrum against not only Gram-negative, but also Gram- positive bacteria. Furthermore, it was found to have an antimicrobial activity against vancomycin-resistant enterococci (VRE), methicillin-resistant S. arureus (MRSA), and vancomycin-intermediate resistant S. arureus (VISA). It may be a useful molecule for a new antibiotic development, especially against antibiotic resistant microbe. This substance may play a role in the defense system of this animal against Beauveria bassiana. This is the first report of a peptidyl antimicrobial substance from B. corpus.

Late Pleistocene Fluvial Sequence in South Korea

  • Kim, Ju-Yong;Yang, Dong-Yoon;Nahm, Wook-Hyun;Lee, Yung-Jo;Park, Ji-Hoon
    • 한국제4기학회지
    • /
    • 제18권2호통권23호
    • /
    • pp.33-42
    • /
    • 2004
  • In South Korea a Pedo-sedimentary Sequence(PS) indicating the Last Glacial Maximun(LGM) is typified y a brown to dark brown, relatively stiff paleosol layers formed by repetitive freezing and thawing processes which in turn left characteristi glossic textures in soil-solum, polygolnal structures with a flagipans, vertical soil wedges or freezing cracks, and horizontal foliations, As a pre-LGM sedimentary sequences (older than 25Ka), the Old Fluvial Sequence(OFS) overlain by the Slope Sedimentary Sequence(SS) are distributed commonly at the base level higher than 14-15m above present river-bed along the major river basin. After the LGM (ca. 18Ka), the Young Fluvial Sequence(YFS) appears at an altitude ascending order of sedimentary profiles. In this fluvial organic muds of Jangheungri site(Jinju), Sorori site(Cheonwon), and Youngsan estruarine rivermouth(Mokpo) were exemplified in order to interpret their formation ages and environments. As result of $^{14}C$ datings, the formation ages of te organic muds are Boelling to Alleroed (MIS-1). These organic muds were fomed in fluvial backswamp or local pond/bog in response to shifting fluvial system. On the basis of palynological production dominant with Abies/Picea-Betula and Ranunculaceae, Compositae, Cyperaceae, and Graminae, it was interpreted that more boreal to subboreal condition was prevailed rather than temperate like today during the formation of organic muds and soil moisture condition was a repetition of wet and dry condition.

  • PDF

선수 구조부 구조해석 시스템 개발(3) - 동적 구조해석 - (Development of Structural Analysis System of Bow Flare Structure(3) - Dynamic Structural Analysis -)

  • 이상갑;박중규
    • 대한조선학회논문집
    • /
    • 제37권1호
    • /
    • pp.99-110
    • /
    • 2000
  • 파랑충격하중에 의한 선수 구조부의 손상은 주로 충격압력역적과 파랑충격하중이 가한 면적에 의하여 크게 영향을 받는다. 본 연구에서는 세 번째 단계로서 LS/DYNA3D를 이용하여 파랑충격하중에 대한 DWT 300,000급 VLCC의 선수 구조부의 동적 구조해석을 수행하여 검증을 하고자 한다. 극치 6.5MPa, 후부높이 1.0MPa, 지속시간 5.0msec인 파랑충격압력 곡선을 강성이 작은 보강재로 보강된 선수 구조부에는 면적 $1.5s{\times}1.5s$, 대체로 강성이 큰 스트링거 등의 부재로 보강된 경우는 면적 $2.5s{\times}2.5s$에 가한다. 이상의 동적 구조해석을 통하여 넓은 간격의 보강재가 부착된 선수 구조부에는 외판과 보강재에 큰 손상변형이 발생한 것 이외는 고려 중인 유조선의 선수 구조부는 본 연구의 파랑충격하중에 대하여 충분한 강도를 지닌다고 사료된다.

  • PDF

지점 위에 질량과 강성이 큰 연결기를 갖는 다경간 보의 모드편재 (Mode Localization in Multispan Beams with Massive and Stiff Couplers on Supports)

  • Dong-Ok Kim;Sun-Kyu Park;In-Won Lee
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1166-1171
    • /
    • 1998
  • 본 연구에서는 이웃한 두 경간 사이에 있는 질량과 강성을 갖는 연결기가 모드편재에 미치는 영향을 해석적으로 분석하고 수치예제를 통해 그 결과를 검증하였다. 연결기의 강성이 구조물의 모든 고유모드를 모드편재에 민감하게 만드는 반면 연결기의 질량은 고차모드의 민감도를 심각히 증가시킨다. 또한 본 연구에서는 일부 고유모드에서 새로운 형태의 반편재현상을 관찰하였다. 반편재현상이 발생하는 모드에서는 경간 사이의 연성이 매우 약하고 구조 변화가 심각하게 발생하더라도 모드편재 현상이 발생하지 않거나 발생하더라도 매우 미약하게 나타난다. 해석적 분석에서는 연결기를 사이에 두고 있는 두개의 부구조물을 단순화 시킨 강성-질량 시스템을 대상으로 하였다. 수치예제에서는 중간 지점에 회전강성과 회전질량을 갖으며 단순지지된 이경간 연속보를 해석하였다.

  • PDF

Nanotribological Properties of Chemically Modified Graphene

  • Kwon, Sangku;Ko, Jae-Hyeon;Byun, Ik-Su;Choi, Jin Sik;Park, Bae Ho;Kim, Yong-Hyun;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.159-159
    • /
    • 2013
  • Atomically thin graphene is the ideal model system for studying nanoscale friction due to its intrinsic two-dimensional anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro and nano-mechanical devices. Here, we report that the tribological properties can be easily altered via simple chemical modifications of the graphene surface. Friction force microscopy measurements show that hydrogenated, fluorinated, and oxidized graphenes exhibit, 2-, 6-, and 7-fold enhanced nanoscale friction on their surfaces, respectively, compared to pristine graphene. The measured nanoscale friction should be associated with the adhesive and elastic properties of the chemically modified graphenes. Density functional theory calculations suggest that, while the adhesive properties of chemically modified graphenes are marginally reduced down to ~30%, the out-of-plane elastic properties are drastically increased up to 800%. Based on these findings, we propose that nanoscale friction on graphene surfaces is characteristically different from that on conventional solid surfaces; stiffer graphene exhibits higher friction, whereas a stiffer three-dimensional solid generally exhibits lower friction. The unusual friction mechanics of graphene is attributed to the intrinsic mechanical anisotropy of graphene, which is inherently stiff in plane, but remarkably flexible out of plane. The out-of-plane flexibility can be modulated up to an order of magnitude by chemical treatmentof the graphene surface. The correlation between the measured nanoscale friction and the calculated out-of-plane flexibility suggests that the frictional energy in graphene is mainly dissipated through the out-of-plane vibrations, or the flexural phonons of graphene.

  • PDF

고감성 의류용 PTT/울/모달 에어 볼텍스 복합사의 물성 (Physical Property of PTT/Wool/Modal Air Vortex Yarns for High Emotional Garment)

  • 김현아
    • 한국의류학회지
    • /
    • 제39권6호
    • /
    • pp.877-884
    • /
    • 2015
  • Polytrimethylene Terephthalate (PTT) is an eco-fiber with good elastic properties; however, it requires more detailed studies related to spinnability according to blending of various kinds of fibers. The evolution of spinning technology was focused on improved productivity with good quality; in addition, air vortex spinning was recently invented and applied on the spinning factory as the facility with good productivity and quality. More detail spinning technology according to the blending of various kinds of fibers on the air vortex spinning system is required to obtain good quality yarns for high emotional fabrics. In this paper, the physical properties of air vortex, compact and ring staple yarns using PTT/wool/modal blend fibers were investigated with yarn structure to promote high functional PTT that includes fabrics for high emotional garments. Unevenness of air vortex yarns was higher than those of compact and ring yarns; in addition, imperfections were greater than those of compact and ring yarns, which was attributed to a fascinated vortex yarn structure. Tenacity and breaking strain of air vortex yarns were lower than those of compact and ring yarns, caused by higher unevenness and more imperfections of air vortex yarns compared to compact and ring yarns. Vortex yarns showed the highest initial modulus and ring yarns showed the lowest ones which results in a stiff tactile feeling of air vortex yarns in regards to the initial modulus of yarns. Dry and wet thermal shrinkages of air vortex yarns were lower than ring yarns. Good shape retention of vortex yarns was estimated due to low thermal shrinkage.

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.

Reliability analysis for lateral stability of tongwamen bridge

  • Pan, Sheng-Shan;Lei, Shi;Tan, Yong-Gang;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.423-434
    • /
    • 2011
  • Tongwamen Bridge is a critical link between Dongmen Island and the land in Shipu town, Zhejiang province, China. It is a 238 m span, half-through, concrete-filled steel tubular (CFST) X-type arch bridge. The width of the deck is only 10 m, yielding a width-to-span ratio of 1/23.8. The plane truss type section rib was adopted, which made of two CFST chords and web member system. The lateral stability is the key issue to this bridge. However, the existing researches on Tongwamen Bridge's lateral stability are all the deterministic structural analysis. In this paper, a new strategy for positioning sampling points of the response surface method (RSM), based on the composite method combining RSM with geometric method for structural reliability analysis, is employed to obtain the reliability index of lateral stability. In addition the correlated parameters were discussed in detail to find the major factors. According to the analysis results, increasing the stiff of lateral braces between the arch ribs and setting the proper inward-incline degree of the arch rib can enhance obviously the reliability of lateral stability. Moreover, the deck action of non-orienting force is less than the two factors above. The calculated results indicate that the arch ribs are safe enough to keep excellent stability, and it provides the foundation that the plane truss rib would be a competitive solution for a long-span, narrow, CFST arch bridge.