• Title/Summary/Keyword: sterilized goat milk

Search Result 2, Processing Time 0.03 seconds

Characteristics of Goat Milk and Current Utilizing Trends in Korea (산양유의 특성 및 국내 이용 현황)

  • Im, Yeong-Sun;Gwak, Hae-Su;Lee, Si-Gyeong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • Goat milk is digested better than cow milk, because the fat globules in goat milk are smaller and the protein is similar to human milk, and assimilated easily. Goat milk is particularly rich in taurine (4.7mg/100mL) and retinol (40mg/100mL). Therefore, it might be recommened to heal dyspepsia and infants allergy by cow milk. However, during winter, supply of goat milk products are unsteady in Korea, because unbalance of demand and supply is resulted from seasonal breeding. Dairy industry for goat milk will be able to grow much more, if goat milk products can keep steady supply without changing by season. This review includes the physicochemical characteristics of goat milk, domestic production of goat milk, domestic goat milk products and future development.

  • PDF

Effect of supplementary glycerin on milk composition and heat stability in dairy goats

  • Thoh, Deela;Pakdeechanuan, Patcharin;Chanjula, Pin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1711-1717
    • /
    • 2017
  • Objective: This experiment was studied the effects of various levels of crude glycerin (CG) in dairy goat diet on daily intake, milk yield, milk composition, some physical properties and some quality changes of goat milk after sterilization. Methods: Twelve 75% Saanen dairy goats (body weight = $49{\pm}3kg$; days in milk = $60{\pm}12d$) were randomly assigned in a completely randomized design to evaluate the effects of three experimental diets consisting of 0%, 5%, and 10% CG (dry matter basis) which were formulated to meet or exceed the nutrient requirements of goats. Experimental dairy goats were evaluated for feed and milk yield. Milk samples were analyzed for their composition, including fatty acids, casein profile, fat globule size, and color, and were sterilized to evaluate milk heat stability. Results: There were no significant differences between 0% and 5% CG treatments infeed. Increasing CG supplementation from 0% to 5% increased milk yield from $2.38{\pm}0.12$ to $2.64{\pm}0.23kg/goat/d$. In addition, milk samples from 5% CG treatment had the highest total solids, fat content and lactose content, and largest fat globule size. Increasing CG to 10% resulted in a decrease in milk fat. After sterilizing at $116^{\circ}C$, $F_0=3min$, goat milk samples from 5% CG treatment had slightly higher sediment content and comparatively higher degree of browning. Conclusion: Considering milk yield, milk fat content and quality of sterilized milk, 5% CG supplementation in a total mixed ration has a potential for implementation in dairy goats.