• Title/Summary/Keyword: sterilization of microorganisms

Search Result 120, Processing Time 0.028 seconds

Hygienic Quality and Safety of Gamma Irradiated Angelicae Gigantis Radix and Aloe (감마선조사에 의한 당귀와 알로에의 위생화 및 안전성 평가)

  • 강일준;이수용;이상준;김광훈;이병훈
    • Toxicological Research
    • /
    • v.13 no.1_2
    • /
    • pp.55-60
    • /
    • 1997
  • Gamma irradiation was applied to Angelicae gigantis radix and Aloe to improve their hygienic quality. The effective dose of irradiation was 7 kGy in Angelicae gigantis radlx and 5 kGy in Aloe for the sterilization of all contaminated microorganisms tested. After 8 months of storage at room temperature, no growth of microorganisms was observed in the irradiated products. The safety of these products were evaluated by Salmonella typhimurium reversion assay and in vivo micronucleus assay using mouse bone marrow cells. They were negative in the bacterial reversion assay with S. typhimurium TA 98, TA100, TA1535 and TA1537. In the in vivo mouse micronucleus assay, they did not show any clastogenic effect at all doses tested. These results indicate that the gamma irradiation of Angelicae gigantis radix at 12 kGy and of Aloe at 10 kGy have no genotoxic effects under these experimental conditions.

  • PDF

Cellular and Molecular Responses of a Filamentous Fungus Neurospora Crassa to Non-thermal Plasma at Atmospheric Pressure

  • Park, Gyung-Soon;Ryu, Young-Hyo;Hong, Young-June;Uhm, Han-Sup;Choi, Eun-H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.476-476
    • /
    • 2012
  • Although plasma is an efficient means of microbial sterilization, mechanism of plasma effect on microorganisms still needs to be clarified. In addition, a limited number of studies are available on eukaryotic microorganisms such as yeast and fungi in relation to plasma application. Thus, we investigated cellular and molecular aspects of plasma effects on a filamentous fungus, Neurospora crassa by making use of argon plasma jet at atmospheric pressure. The viability and cell morphology of N. crassa spores exposed to plasma were both significantly reduced depending on the exposure time when treated in water. The intracellular genomic DNA content was dramatically reduced in fungal tissues after a plasma treatment and the transcription factor tah-3 was found to be required for fungal tolerance to a harsh plasma environment.

  • PDF

Antimicrobial Agents and Applications on Polymeric Materials (고분자재료에 대한 항균성 물질과 적용)

  • Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.20 no.3
    • /
    • pp.39-56
    • /
    • 2008
  • A wide variety of materials including aldehydes, cationic agents, alcohols, peroxygens, phenols and chlorinated phenols, metal ions are being employed as biocides. Among three levels for biocidal functions (sanitization, disinfection and sterilization), disinfection is an enough level for antimicrobial textiles. In terms of antimicrobial agents for textile applications, quaternary ammonium salts (QAS), chitosan, metal and metal salts, N-halamine based materials are developed with numerous research and the positive ions of those materials may result in disinfection of microorganisms. Photocatalysts, especially titanium dioxide (titania) produces the hydroxyl radical (${\cdot}\;OH$) which causes inactivation of microorganisms after UV radiation, have been used for antimicrobial applications.

Microbial Changes of Salted and Fermented Shrimp by High Hydrostatic Pressure Treatment (초고압처리에 의한 새우젓의 미생물변화)

  • Mok, Chul-Kyoon;Song, Ki-Tae;Lee, Sang-Ki;Park, Jong-Hyun;Woo, Gun-Jo;Lim, Sang-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.349-355
    • /
    • 2000
  • This study was conducted to enhance the storage stability of fermented shrimp with different salt contents using a high hydrostatic pressure. The effects of the magnitude of pressure and treatment time on the microorganisms of the fermented shrimp were investigated. The highest microbial counts with respect to the salt levels were observed at 18% salt, showing $3.4{\times}10^5\;CFU/g$ for general bacteria, $6.4{\times}10^4\;CFU/g$ for halophilic bacteria, $4.2{\times}10^5\;CFU/g$ for yeast and $3.0{\times}10^4\;CFU/g$ for halophilic yeast. The degree of sterilization increased with the magnitude of pressure and treatment time, and the sterilization could be analyzed by the first order reaction kinetics. The sterilization rate constants $(k_p)$ of the halophilic bacteria was lower than that of general bacteria. The $log(k_p)$ increased linearly with pressure and the slope of the regression line of the halophilic bacteria was greater than that of general bacteria, indicating that the sterilization of the halophilic bacteria was more dependent on the pressure. High hydrostatic pressure treatment was an effective non-thermal sterilization method for the salted and fermented shrimp, and the optimum treatment condition was for 10 min at 6,500 atm.

  • PDF

Sterilization of Yakju(Rice Wine) on a Serial Multiple Electrode Pulsed Electric Field Treatment System (직렬배열 다중전극 고전압 펄스 전기장 처리장치를 이용한 약주의 살균)

  • Mok, Chull-Kyoon;Lee, Sang-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.356-362
    • /
    • 2000
  • Yakju(rice wine) was sterilized with high-voltage square-wave pulses of $1\;{\mu}s$ duration at various electric field strengths and frequencies on a serial multiple electrode pulsed electric field(PEF) treatment system consisted of 7 electrodes connected in series. The initial microbial counts of Yakju were $1.88{\times}10^3{\sim}2.13{\times}10^4$ CFU/mL for total aerobes, $1.55{\times}10^3{\sim}2.85{\times}10^4$ CFU/mL for lactic acid bacteria and $1.72{\times}10^3{\sim}2.39{\times}10^4$ CFU/mL for yeasts. The sterilization of microorganisms in Yakju was a first order reaction and the sterilization effect increased as the field strength and the frequency increased. The $D_{Hz}-value$ and the $D_{PEF}-value$ decreased with the electric field strength. Yeast showed lower $D_{PEF}-value$ than bacteria. Lactic acid bacteria showed lower $D_{PEF}-value$ than general aerobic bacteria under the electric field strength below 30 kV/cm, but higher ones under that above 40 kV/cm. The $Z_{PEF}-value$ of general aerobic bacteria, lactic acid bacteria and yeast in Yakju were 39.4, 49.3 and 47.6 kV/cm, respectively. The PEF sterilization resulted in less changes in color and sensory properties than heat sterilization, and the PEF treated Yakju showed superior quality to the heat treated one. The commercial sterilization of Yakju was accomplished with 2-cycle treatment on the tested serial PEF treatment system.

  • PDF

Effect of Mixed Oxidants and Sodium Hypochlorite on Pathogenic Microorganisms in Olive flounder Paralichthys olivaceus Aquaculture on Jeju Island (제주도 양식 넙치(Paralichthys olivaceus)에서 분리한 병원균 3종에 대한 Mixed Oxidant 및 차아염소산나트륨 살균효과)

  • Park, Cheonman;Kim, Ki-hyuk;Moon, Hye-na;Yeo, In-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.4
    • /
    • pp.389-396
    • /
    • 2018
  • Marine pathogenic bacteria, such as Streptococcus parauberis, Edwardsiella tarda and Vibrio harveyi, can cause lethal infections in farmed fish, ozone and antibiotics, are employed to sterilize waters used for rearing fish to mitigate this threat. The most widely used method is treatment with sodium hypochlorite solution. However, the maintenance of a constant concentration of chlorine in rearing waters can be difficult. We investigated the potential of a mixed oxidant (MO) solution generated by electrolysis of sea water to improve water quality. We measured the survival rates of fish pathogenic bacteria exposed to different concentrations of MO (0.5, 1.0, 1.5 and 2.0 MO) and sodium hypochlorite (0.5, 1.0, 1.5 and 2.0 ppm) for various lengths of time (0, 5, 10, 15, 20, 25 and 30 min). We found a time-dependent decrease in the survival rates of the tested pathogenic microorganisms. The sterilization effect of the MO solution on pathogenic organisms was greater than that of sodium hypochlorite for gram-negative and gram-positive bacteria. We conclude that MO solution produced by electrolysis could be used to maintain a constant chlorine concentration in aquaculture systems.

Disinfection of harmful organisms for sea water using electrolytic treatment system (전해처리를 통한 해수의 유해생물 살균처리)

  • Park Sang-Ho;Kim In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.955-960
    • /
    • 2004
  • The treated ballast water from previous treatment contains microorganisms and pathogenic organisms in an electrolytic treatment system. The experimental methods included using a peristaltic flow pump placed upward on an electrode pole. Due to the reaction time, the hydraulic retention time indicated unlike microorganisms on the flow rate. In electrolysis, dioxide iridium-coated titanium (Ti/Ir02) and stainless steel plates were used for the anode and cathode, respectively. Current density controls make use of a DC power supply on 250V, 100Amper. Experimental use of a current density between 0.1 and 1.0A/dm2 was able to disinfect the microorganism (E. coli, Bacteria, Bacillus sp.) in seawater for 5 seconds of reaction time. The removal rate was approximately $90\%,$ while the current density was 2.0A/dm2 and the electrode distance was 75mm. This study shows that the electrolytic treatment system has a potential for the sterilization of ballast water.

Antimutagenic and Antimicrobial Effect of Cucumber (Cucumis sativus) Extracts (오이 추출물의 항돌연변이 및 항미생물 효과)

  • 정숙현;문숙희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1164-1170
    • /
    • 2001
  • Antimutagenic and antimicrobial effects of cucumber extracts were investigated. Antimutagenic effects of cucumber extract against aflatoxin (AFB$_1$) as indirect mutagen and N-methyl-N'-nitro-N-nitrcsoguanidine (MNNG) as direct mutagen using the Ames assay system with Salmonella typhimurium TA100 were studied. 1.25~5.0% of methanol extract exhibited 11 ~ 17% of antimutagenity against AFB$_1$ and 46~85% of antimutagenity against MNNG. Among fractions of methanol extract, hexane fraction exhibited the highest antimutagenic effect against AFB$_1$ (89%) and butanol fraction exhibited the highest antimutagenic effect against MNNG (95%). Antimicrobial effects of cucumber extract were investigated on the eleven microorganisms. Methanol extract showed anitimicrobial effect on eight microorganisms. Among these tested microorganisms, Klebsiella pnemonia KCTC 2208, pseudomonas aeruginosa KCTC 2004 were the most sensitively inhibited with 13 mm clear zone on holo test. Hexane fraction showed anitimicrobial effect only on Vibrio parahaemolyticus KCTC 2471. Chloroform and ethyl acetate fractions showed a weak effect. V. parahaemolyticus showed the lowest minium inhibitory concentration (MIC) (500 ppm) among eleven tested microorganisms by methanol extract. Sterilization effect of 1% methanol extract on P. aeruginosa incubation is 10 times stronger than 0.5% methanol extract. It estimated to need 26 min for the sterilization of 90% P. aeruginosa cell counts by 1% methanol extract but 250 min by 0.5% methanol extract.

  • PDF

The effect of sterilization condition and UV-C irradiation on the reduction of contamination rate for oyster mushroom bottle culture (살균조건 및 UV-C 조사가 느타리버섯 병재배 오염율 감소에 미치는 영향)

  • Baek, Il-Sun;Chi, Jeong-Hyun;Jeoung, Yun-Kyeoung;Kim, Jeong-Han;Lim, Jae-Wook
    • Journal of Mushroom
    • /
    • v.13 no.3
    • /
    • pp.256-261
    • /
    • 2015
  • This study was conducted to reduce contamination ratio of oyster mushroom bottle cultivation. The optimal conditions of substrate sterilization for reducing of contamination ratio were at $121^{\circ}C$ for 90 min. In addition, UV-C irradiation is good for lower contamination ratio to continue over 6 hours at cooling and inoculation room after sterilization. The contamination ratio and density of microorganisms of substrate were showed 0% after sterilization at $121^{\circ}C$ for 90 min. Trichoderma sp., main pathogen of mushrooms, was detected from substrate after sterilized during 2 or 4 hours at $101^{\circ}C$ and $105^{\circ}C$, respectively. The amount of electricity used was the lowest at $121^{\circ}C$ for 90 min than that of other sterilization conditions. The UV-C irradiation treatment was used UV-C lamp(40 watts) in the inoculation room($56m^3$). The density of bacteria did not detected after UV-C irradiation for 6 hours. And the death ratio of bacteria and Trichoderma sp. was 99.9% after UV-C irradiation for 6 hours. However, in the same UV-C irradiation time, the death ration of Cladosporium sp. was 90.9%. Therefore, the death ratio of fungi was lower than that of bacteria at the same UV-C irradiation treatment.

Sterilization and quality variation of dried red pepper by atmospheric pressure dielectric barrier discharge plasma (대기압 유전체장벽방전 플라즈마에 의한 건고추의 식중독균 살균효과 및 품질변화)

  • Song, Yoon Seok;Park, Yu Ri;Ryu, Seung Min;Jeon, Hyeong Won;Eom, Sang Heum;Lee, Seung Je
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.960-966
    • /
    • 2016
  • This study was conducted to explore the potential for use of atmospheric pressure dielectric barrier discharge plasma (atmospheric pressure DBD plasma) as a non-thermal sterilization technology for microorganisms in dried red pepper. The effects of key parameters such as power, exposure time and distance on the sterilization efficiency and the quality of red dried pepper by the atmospheric pressure DBD plasma treatment were investigated. The results revealed that the plasma treatment was very effective for sterilization of Staphylococcus aureus, with 15 min of treatment at 1.0 kW and 20 mm sterilizing 82.6% of the S. aureus. Increasing the power or exposure time and decreasing the exposure distance led to improved sterilization efficiency. The atmospheric pressure DBD plasma treatment showed no effect on the ASTA (American spice trade association) value or hardness of dried red pepper. Furthermore, no effects of atmospheric pressure DBD plasma treatment were observed on the sensory properties of dried red pepper. To assess the storage stability, the dried red pepper was treated with atmospheric pressure DBD plasma (1.5 kW power, 15 min exposure time and 10 mm exposure distance), then stored for 12 weeks at $25^{\circ}C$. Consequently, the ASTA value, hardness and capsaicin concentration of dried red pepper were maintained.