• Title/Summary/Keyword: sterilisation

Search Result 3, Processing Time 0.024 seconds

Development of Integrated Cultivation Machine System for Oyster-Mushroom

  • Choe K. J.;Oh K. Y.;Ryu B. K.;Lee S. H.;Park H. J.
    • Agricultural and Biosystems Engineering
    • /
    • v.5 no.2
    • /
    • pp.50-54
    • /
    • 2004
  • The study aimed to develop a mechanized mushroom growing system for the substrate materials mixing and wetting, materials fermentation and pasteurisation through the design of integrated cultivation machine system for oyster mushroom. The power requirement of the prototype during fermentation operation was measured in the range of 31$\~$33 kg-m and the torque has not so much differ by the kinds and quantity of materials. The work efficiency of conventional method for stacking the heap and turning the heap of cotton waste by tractor rotavator and manual wetting required 78 hours. But the watering, fermentation and sterilisation by the prototype use same operation required 25.5 hours, which can save the operation labour by $67\%$. The machine can be saved the requirement of heating energy by $63\%$, and the machine can also be saved the material cost by $44\%$. It is envisaged that the machine can effectively be used for large mushroom growing farms or joint use mushroom growing group-farmers in a village.

  • PDF

Enviromental Application of Plasma Technology

  • Lee, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.119.1-119.1
    • /
    • 2014
  • Toxic waste disposal: Many people think that when toxic waste is dumped into the ocean or into the air, it disappears. This belief is incorrect. Rather than disappearing, it accumulates over time and slowly destroys the environment. Ultimately, it leads to the destruction of human race. Plasma is environmentally friendly: Plasma is environmentally friendly because it is created and disappears. When plasma is formed on the earth, you need certain conditions such as accelerating electrons by an electrical discharge or a particle accelerator. When this is gone, plasma completely disappears, leaving no impact on the environment. Plasmas produce radicals: Even if plasma density is low at atmospheric pressure, many radicals (excited states of molecules) are created. These radicals are chemically very aggressive. So instead of using harmful chemicals, plasma can be utilized for less of an impact on the environment. Plasma can reach very high temperatures: Plasma is also useful because when you control the density, you can easily reach high temperatures up to $5000{\sim}6000^{\circ}C$ at atmosphere pressure. Because of this heat and the chemical aggressiveness of the plasma, there are many green applications for plasma technology. Pulsed power technology: Pulsed electric field for extraction, drying and killing bacteria. Treatment of biological tissue by pulsed electric fields: Extraction of substances from cells: Sterilisation, Medical applications, Growth stimulation, Food preparation. Each application has its specialities, especially with respect to pulse shape and electric field strength.

  • PDF

Sources and Variations of Extracellular Enzymes in a Wetland Soil (습지 토양에서 체외효소의 근원과 변화)

  • Freeman, Chris;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.326-330
    • /
    • 2002
  • A wetland soil was sterilised by two methods and changes in microbial enzyme activities were assessed. The short-term effects were determined by toluene addition, while the longer-term effects of elimination was monitored by ${\gamma}$-radiation. The changes in ${\beta}$- glucosidase, ${\beta}$-xylosidase, cellobiohydrolase, phosphatase, arylsulphatase, and N-acetylglucosaminidase activities were determined by using methylumbelliferyl model substrates and comparing with the activities of control samples. Toluene addition induced different responses of enzymes. For example, phosphatase activity increased by the treatment while ${\beta}$-glucosidase and arylsulphatase activities decreased. In contrast, ${\gamma}$-radiation decreased all enzyme activities compared to control by 40-80%. The overall results of the toluene and ${\gamma}$-radiation experiments indicate that the large amounts of enzymes are stabilised outside of living cells, at least in the short term, but that the persistence of enzymes is maintained by de-novo synthesis of microbes.