• Title/Summary/Keyword: stereo system

Search Result 794, Processing Time 0.029 seconds

The Development of Device and the Algorithm for the Haptic Rendering (가상현실 역감구현을 위한 알고리즘과 장치개발)

  • 김영호;이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.106-109
    • /
    • 2000
  • The virtual reality - haptic device is developed for the purpose used in the work that human cannot approach and that need elaborate exercises. To render haptic, the total system is constituted master, haptic device, and slave, remote manipulator. Human operates the remote manipulator. Human operates the remote manipulator relying on the hapti devices and stereo graphic. And then the force and scene of the remote manipulator is fed-back from each haptic devices and virtual devices. The feedback information gets system gain exactly. The system gain provides the most exact haptic and virtual devices. The feedback information gets system gain exactly. The system gain provides the most exact haptic and scene to human by the location, the graphic rendering and the haptic rendering algorithm on real-time. In this research, 3D haptic device is developed for common usage and make human feel the haptic when human contacts virtual object rendered by computer graphic. The haptic device is good for tracing location and producing devices because of the row structure. Also, openGL and Visual Basic is utilized to the algorithms for haptic rendering. The haptic device of this research makes the interface possible not only with virtual reality but also with the real remote manipulator.

  • PDF

Design and Development of T-DMB Multichannel Audio Service System Based on Spatial Audio Coding

  • Lee, Yong-Ju;Seo, Jeong-Il;Beack, Seung-Kwon;Jang, Dae-Young;Kang, Kyeong-Ok;Kim, Jin-Woong;Hong, Jin-Woo
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • In this paper, a terrestrial digital multimedia broadcasting (T-DMB) multichannel audio broadcasting system based on spatial audio coding is presented. The proposed system provides realistic multichannel audio service via T-DMB with a small increase of data rate as well as backward compatibility with the conventional stereo-based T-DMB player. To reduce the data rate for additional multichannel audio signals, we compress the multichannel audio signals using the sound source location cue coding algorithm, which is an efficient parametric multichannel audio compression technique. For compatibility, we use the dependent property of an elementary stream descriptor, and this property should be ignored in a conventional T-DMB player. To verify the feasibility of the proposed system, we implement the T-DMB multichannel audio encoder and a prototype player. We perform a compatibility test using the T-DMB multichannel audio encoder and conventional T-DMB players. The test demonstrates that the proposed system is compatible with a conventional T-DMB player and that it can provide a promisingly rich audio service.

3D Orientation and Position Tracking System of Surgical Instrument with Optical Tracker and Internal Vision Sensor (광추적기와 내부 비전센서를 이용한 수술도구의 3차원 자세 및 위치 추적 시스템)

  • Joe, Young Jin;Oh, Hyun Min;Kim, Min Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.579-584
    • /
    • 2016
  • When surgical instruments are tracked in an image-guided surgical navigation system, a stereo vision system with high accuracy is generally used, which is called optical tracker. However, this optical tracker has the disadvantage that a line-of-sight between the tracker and surgical instrument must be maintained. Therefore, to complement the disadvantage of optical tracking systems, an internal vision sensor is attached to a surgical instrument in this paper. Monitoring the target marker pattern attached on patient with this vision sensor, this surgical instrument is possible to be tracked even when the line-of-sight of the optical tracker is occluded. To verify the system's effectiveness, a series of basic experiments is carried out. Lastly, an integration experiment is conducted. The experimental results show that rotational error is bounded to max $1.32^{\circ}$ and mean $0.35^{\circ}$, and translation error is in max 1.72mm and mean 0.58mm. Finally, it is confirmed that the proposed tool tracking method using an internal vision sensor is useful and effective to overcome the occlusion problem of the optical tracker.

AUTOMATIC GENERATION OF UNSTRUCTURED SURFACE GRID SYSTEM USING CAD SURFACE DATA (CAD 형상 데이터를 이용한 비정렬 표면 격자계의 자동 생성 기법)

  • Lee, B.J.;Kim, B.S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.68-73
    • /
    • 2007
  • Computational Fluid Dynamics (CFD) approach is now playing an important role in the engineering process in these days. Generating proper grid system in time for the region of interest is prerequisite for the efficient numerical calculation of flow physics using CFD approach. Grid generation is, however, usually considered as a major obstacle for a routine and successful application of numerical approaches in the engineering process. CFD approach based on the unstructured grid system is gaining popularity due to its simplicity and efficiency for generating grid system compared to the structured grid approaches, especially for complex geometries. In this paper an automated triangular surface grid generation using CAD(Computer Aided Design) surface data is proposed. According to the present method, the CAD surface data imported in the STL(Stereo-lithography) format is processed to identify feature edges defining the topology and geometry of the surface shape first. When the feature edges are identified, node points along the edges are distributed. The initial fronts which connect those feature edge nodes are constructed and then they are advanced along the CAD surface data inward until the surface is fully covered by triangular surface grid cells using Advancing Front Method. It is found that this approach can be implemented in an automated way successfully saving man-hours and reducing human-errors in generating triangular surface grid system.

The Efficient Measurement Method of Buried Heritage by 3D Image Acquisition (3차원 영상취득에 의한 매장문화재의 효율적 측정기법)

  • Lee, Kye-Dong;Lee, Jae-Kee;Jung, Sung-Heuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.157-163
    • /
    • 2007
  • Recently, industrialization of a country is accelerated and request of society infrastructure is raised so national land development is activity view. Accordingly, the search for a wide-ranging buried heritage do acted in large construction region. Because the buried heritage get buried in land that it is necessary to the precision search and research for a record and a preservation. Until now, Surveying techniques of a historic site have made status map, profile and cross section map through leveling survey, total-station survey and sketch of specialist. So, to solve problems existing relic survey or drawing making method have using digital camera these researches rapidly and economically obtain stereo image of object and present a technique that constructs 3D image model for digital photogrammetry method. Also, these researches construct 3D image model for record and preservation of a historic site through site test and in 3D and graphical express a historic site and support works that produce other maps if we need it. offer base data of GIS (Geographic Information System) to collect and analyze overall, information of a historic site.

Stereo Semi-direct Visual Odometry with Adaptive Motion Prior Weights of Lunar Exploration Rover (달 탐사 로버의 적응형 움직임 가중치에 따른 스테레오 준직접방식 비주얼 오도메트리)

  • Jung, Jae Hyung;Heo, Se Jong;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.479-486
    • /
    • 2018
  • In order to ensure reliable navigation performance of a lunar exploration rover, navigation algorithms using additional sensors such as inertial measurement units and cameras are essential on lunar surface in the absence of a global navigation satellite system. Unprecedentedly, Visual Odometry (VO) using a stereo camera has been successfully implemented at the US Mars rovers. In this paper, we estimate the 6-DOF pose of the lunar exploration rover from gray images of a lunar-like terrains. The proposed algorithm estimates relative pose of consecutive images by sparse image alignment based semi-direct VO. In order to overcome vulnerability to non-linearity of direct VO, we add adaptive motion prior weights calculated from a linear function of the previous pose to the optimization cost function. The proposed algorithm is verified in lunar-like terrain dataset recorded by Toronto University reflecting the characteristics of the actual lunar environment.

Real-time Stereo Video Generation using Graphics Processing Unit (GPU를 이용한 실시간 양안식 영상 생성 방법)

  • Shin, In-Yong;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.16 no.4
    • /
    • pp.596-601
    • /
    • 2011
  • In this paper, we propose a fast depth-image-based rendering method to generate a virtual view image in real-time using a graphic processor unit (GPU) for a 3D broadcasting system. Before the transmission, we encode the input 2D+depth video using the H.264 coding standard. At the receiver, we decode the received bitstream and generate a stereo video using a GPU which can compute in parallel. In this paper, we apply a simple and efficient hole filling method to reduce the decoder complexity and reduce hole filling errors. Besides, we design a vertical parallel structure for a forward mapping process to take advantage of the single instruction multiple thread structure of GPU. We also utilize high speed GPU memories to boost the computation speed. As a result, we can generate virtual view images 15 times faster than the case of CPU-based processing.

Fast Dimming Associated with a Coronal Jet Seen in Multi-Wavelength and Stereoscopic Observations

  • Lee, K.S.;Innes, D.E.;Moon, Y.J.;Shibata, K.;Lee, Jin-Yi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.89.1-89.1
    • /
    • 2012
  • We have investigated a coronal jet observed near the limb on 2010 June 27 by the Hinode/X-Ray Telescope (XRT), EUV Imaging Spectrograph (EIS), and Solar Optical Telescope (SOT), and the SDO/Atmospheric Imaging Assembly (AIA), Helioseismic and Magnetic Imager (HMI), and on the disk by STEREO-A/EUVI. From EUV (AIA and EIS) and soft X-ray (XRT) images we have identified both cool and hot jets. There was a small loop eruption in Ca II images of the SOT before the jet eruption. Using high temporal and multi wavelength AIA images, we found that the hot jet preceded its associated cool jet by about 2 minutes. The cool jet showed helical-like structures during the rising period. According to the spectroscopic analysis, the jet's emission changed from blue to red shift with time, implying helical motions in the jet. The STEREO observation, which enabled us to observe the jet projected against the disk, showed that there was a dim loop associated with the jet. We have measured a propagation speed of ~800 km/s for the dimming front. This is comparable to the Alfven speed in the loop computed from a magnetic field extrapolation of the HMI photospheric field measured 5 days earlier and the loop densities obtained from EIS Fe XIV line ratios. We interpret the dimming as indicating the presence of Alfvenic waves initiated by reconnection in the upper chromosphere.

  • PDF

Implementation of Digital Light Drawing System based on Stereo Vision (스테레오 비전 기반 Light Drawing 시스템 구현)

  • Park, Won-Bae;Park, Chang-Bum;Paik, Doo-Won
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.130-137
    • /
    • 2010
  • Light Drawing is a photographic technique which exposures are made at night or in a darkened room usually by moving a hand-held light source[1]. Due to the limitations of equipment and environment, users having difficulty in drawing a picture in 3D space. If user take a light drawing, they need a camera that have function and darkened environment. Alternative solution is that we can make a light drawing picture by using the computer drawing tool as in Photoshop. Nevertheless, this solution will let the User lose their interest in drawing because this solution cannot synchronize between the real action of human hand motion and the electronic input devices such as mouse and keyboard. This paper proposed a digital content that can make light drawing easier. We used a digital content that will facility Light Drawing easier. We can measure the light spot position by using the stereo camera. Based on the measured position of the light spot, we reproduce light drawing in virtual space by using drawing effect method.

The role of heliospheric current sheet on solar energetic particles with enhanced Fe/O

  • Park, Jinhye;Bucik, R.;Moon, Yong-Jae;Kahler, S.W.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2018
  • We investigate initial Fe/O enhancements for 44 large gradual solar energetic particles events from 2010 to 2014 and examine the associations of the Fe/O enhancements with the structures of the heliospheric current sheet (HCS). For this study, we use STEREO SIT Fe and O data in 0.32-0.45 MeV channel as well as ACE ULEIS Fe and O data in 0.32-0.64 MeV channel. We determine 1) the magnetic polarities of the SEP source regions using the potential field source surface (PFSS) model of the coronal field and 2) the spacecraft magnetic footpoints with Parker spiral approximation of interplanetary magnetic field using the in-situ measurements of STEREO and ACE. We find that 29 out of 44 events have initial Fe/O enhanced more than 5 times of the typical gradual event values. In the 6 events, the enhancements are simultaneously observed by two spacecraft. There is a tendency that the high Fe/O enhancements are observed near SEP source regions. It is also noted that the Fe/O enhancements are associated with the polarity of the magnetic footpoints. The high Fe/O enhancements are usually observed where their footpoints lie in the same polarity regions of SEP sources rather than the opposite polarity regions. Although Fe/O enhancements could be due to a transport effect and/or a flare contribution, our result implies that the structure of HCS is likely to affect particle propagations in the interplanetary space.

  • PDF