• Title/Summary/Keyword: stereo line CCD

Search Result 12, Processing Time 0.016 seconds

Experimental Study on the Three-Dimensional Topology of Hairpin Packet Structures in Turbulent Boundary Layers (난류경계층의 3차원 헤어핀 다발구조에 대한 실험적 연구)

  • Kwon, Seong-Hun;Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.834-841
    • /
    • 2004
  • Experimental study on the three-dimensional topology of hairpin packet structures in turbulent boundary layers were carried out. Two different Reynolds number based on momentum thickness, Re$\sub$$\theta$/=514 and 934 were generated in a blowing type wind tunnel under the condition of zero pressure gradient. Simultaneous measurements of velocity fields at a wall-normal plane and wall-parallel plane by a plane PIV and a Stereo-PIV systems. The two Nd:Yag laser systems and three CCD cameras were synchronized to obtain instantaneous velocity fields at the same time. To avoid optical noise at the crossing line by the two laser light sheets, a new optical arrangement using polarization was applied. The obtained velocity fields show the existence of hairpin packet structure vividly and the idealized hairpin vortex signature is confirmed by experiment. Two counter-rotating vortex pair which reflects the cutting plane of hairpin legs are found both side of a strong streaky structure when the wall-normal plane cuts the hairpin head.

A Study on Extraction Depth Information Using a Non-parallel Axis Image (사각영상을 이용한 물체의 고도정보 추출에 관한 연구)

  • 이우영;엄기문;박찬응;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.9 no.2
    • /
    • pp.7-19
    • /
    • 1993
  • In stereo vision, when we use two parallel axis images, small portion of object is contained and B/H(Base-line to Height) ratio is limited due to the size of object and depth information is inaccurate. To overcome these difficulities we take a non-parallel axis image which is rotated $\theta$ about y-axis and match other parallel-axis image. Epipolar lines of non-parallel axis image are not same as those of parallel-axis image and we can't match these two images directly. In this paper, we transform the non-parallel axis image geometrically with camera parameters, whose epipolar lines are alingned parallel. NCC(Normalized Cross Correlation) is used as match measure, area-based matching technique is used find correspondence and 9$\times$9 window size is used, which is chosen experimentally. Focal length which is necessary to get depth information of given object is calculated with least-squares method by CCD camera characteristics and lenz property. Finally, we select 30 test points from given object whose elevation is varied to 150 mm, calculate heights and know that height RMS error is 7.9 mm.