• 제목/요약/키워드: stereo display

검색결과 143건 처리시간 0.019초

GPGPU 기반의 변위증분 방법을 이용한 중간시점 고속 생성 (Fast Generation of Intermediate View Image Using GPGPU-Based Disparity Increment Method)

  • 구자명;서영호;김동욱
    • 한국정보통신학회논문지
    • /
    • 제17권8호
    • /
    • pp.1908-1918
    • /
    • 2013
  • 자유시점 또는 오토스테레오스코픽 비디오 서비스는 3차원 영상을 제공하는 차세대 방송 시스템으로, 여러 시점의 영상들이 필요하다. 본 논문에서는 가상 시점 영상을 고속 생성하기 위해 알고리즘 병렬 구조를 최적화하고, Compute Unified Device Architecture(CUDA)를 이용한 General Propose Graphic Processing Unit(GPGPU) 기반의 중간시점 영상 고속 생성을 위한 최적화 기법을 제안한다. 제안한 방법은 좌/우 깊이영상을 병렬화시킨 스테레오 정합알고리즘을 이용하여 변위정보를 얻은 후, 깊이 당 변위증분을 계산하여 사용한다. 계산된 변위증분을 사용하여 해당 각 화소들의 깊이 값을 이용하여 좌/우 영상들을 원하는 위치의 중간시점으로 영상을 이동시킨다. 그 다음, 비폐색영역들을 서로 상호 보완하여 없앤 다음에 남은 홀들은 홀 필링으로 없애 최종 중간시점 영상을 생성한다. 제안한 방법을 구현하여 여러 실험 영상에 적용한 결과, 생성된 중간시점 깊이영상의 화질은 평균 PSNR 30.47dB이었으며, Full HD급 중간시점 영상을 초당 38 프레임 정도 생성하는 속도를 보였다.

HDR/WCG 비디오와 3D 오디오를 지원하는 초고품질 방송서비스와 고정 UHD/이동 HD 방송 서비스를 제공하는 ATSC 3.0 기반 UHDTV 방송 시스템 개발 (Development of ATSC3.0 based UHDTV Broadcasting System providing Ultra-high-quality Service that supports HDR/WCG Video and 3D Audio, and a Fixed UHD/Mobile HD Service)

  • 기명석;석진욱;백승권;장대영;이태진;김휘용;오혜주;임보미;배병준;김흥묵;최진수
    • 방송공학회논문지
    • /
    • 제22권6호
    • /
    • pp.829-849
    • /
    • 2017
  • TV디스플레이 대형화, 방송과 통신의 융합화, 신호 압축 및 전송 기술의 고도화로 인해 지상파 디지털 방송은 초고품질 방송, 하이브리드 방송, 고정UHD/이동HD 동시방송을 제공할 수 있는 UHD 방송으로 진화하고 있다. 이러한 지상파 UHDTV 방송을 위한 국내 표준은 북미의 차세대 방송 표준인 ATSC3.0을 근간으로 하고 있다. ATSC3.0은 비디오 압축 표준으로 HEVC 비디오 부호화 표준을, 오디오 압축 표준으로는 MPEG-H 3D 오디오 부호화 표준을 채택하고 있다. 또한 방송망과 IP망에서의 운용을 위해 기존의 MPEG-2 TS 방식을 대신하여 IP기반의 ROUTE/DASH와 MMT를 전송 포맷으로 채택하고 있으며, 4K UHD 방송과 이동 HD 서비스를 동시에 제공하기 위한 다중화 기술을 도입하고 있다. 본 논문에서는 ATSC3.0을 기반으로 HDR/WCG 지원 고품질 비디오 서비스, 10.2채널/4객체 지원 입체음향 서비스, 고정 UHD와 이동 HD 동시방송 서비스를 제공하기 위해 필요한 오디오/비디오 부호화기, ROUTE/DASH 패키저, 다중화 시스템과 물리계층 송수신을 위한 ATSC 3.0 LDM 시스템을 구현하고, 이를 실시간 방송 송수신 환경에 적용하여 서비스 가능성을 검증하고자 하였다.

Wearable Computers

  • Cho, Gil-Soo;Barfield, Woodrow;Baird, Kevin
    • 섬유기술과 산업
    • /
    • 제2권4호
    • /
    • pp.490-508
    • /
    • 1998
  • One of the latest fields of research in the area of output devices is tactual display devices [13,31]. These tactual or haptic devices allow the user to receive haptic feedback output from a variety of sources. This allows the user to actually feel virtual objects and manipulate them by touch. This is an emerging technology and will be instrumental in enhancing the realism of wearable augmented environments for certain applications. Tactual displays have previously been used for scientific visualization in virtual environments by chemists and engineers to improve perception and understanding of force fields and of world models populated with the impenetrable. In addition to tactual displays, the use of wearable audio displays that allow sound to be spatialized are being developed. With wearable computers, designers will soon be able to pair spatialized sound to virtual representations of objects when appropriate to make the wearable computer experience even more realistic to the user. Furthermore, as the number and complexity of wearable computing applications continues to grow, there will be increasing needs for systems that are faster, lighter, and have higher resolution displays. Better networking technology will also need to be developed to allow all users of wearable computers to have high bandwidth connections for real time information gathering and collaboration. In addition to the technology advances that make users need to wear computers in everyday life, there is also the desire to have users want to wear their computers. In order to do this, wearable computing needs to be unobtrusive and socially acceptable. By making wearables smaller and lighter, or actually embedding them in clothing, users can conceal them easily and wear them comfortably. The military is currently working on the development of the Personal Information Carrier (PIC) or digital dog tag. The PIC is a small electronic storage device containing medical information about the wearer. While old military dog tags contained only 5 lines of information, the digital tags may contain volumes of multi-media information including medical history, X-rays, and cardiograms. Using hand held devices in the field, medics would be able to call this information up in real time for better treatment. A fully functional transmittable device is still years off, but this technology once developed in the military, could be adapted tp civilian users and provide ant information, medical or otherwise, in a portable, not obstructive, and fashionable way. Another future device that could increase safety and well being of its users is the nose on-a-chip developed by the Oak Ridge National Lab in Tennessee. This tiny digital silicon chip about the size of a dime, is capable of 'smelling' natural gas leaks in stoves, heaters, and other appliances. It can also detect dangerous levels of carbon monoxide. This device can also be configured to notify the fire department when a leak is detected. This nose chip should be commercially available within 2 years, and is inexpensive, requires low power, and is very sensitive. Along with gas detection capabilities, this device may someday also be configured to detect smoke and other harmful gases. By embedding this chip into workers uniforms, name tags, etc., this could be a lifesaving computational accessory. In addition to the future safety technology soon to be available as accessories are devices that are for entertainment and security. The LCI computer group is developing a Smartpen, that electronically verifies a user's signature. With the increase in credit card use and the rise in forgeries, is the need for commercial industries to constantly verify signatures. This Smartpen writes like a normal pen but uses sensors to detect the motion of the pen as the user signs their name to authenticate the signature. This computational accessory should be available in 1999, and would bring increased peace of mind to consumers and vendors alike. In the entertainment domain, Panasonic is creating the first portable hand-held DVD player. This device weight less than 3 pounds and has a screen about 6' across. The color LCD has the same 16:9 aspect ratio of a cinema screen and supports a high resolution of 280,000 pixels and stereo sound. The player can play standard DVD movies and has a hour battery life for mobile use. To summarize, in this paper we presented concepts related to the design and use of wearable computers with extensions to smart spaces. For some time, researchers in telerobotics have used computer graphics to enhance remote scenes. Recent advances in augmented reality displays make it possible to enhance the user's local environment with 'information'. As shown in this paper, there are many application areas for this technology such as medicine, manufacturing, training, and recreation. Wearable computers allow a much closer association of information with the user. By embedding sensors in the wearable to allow it to see what the user sees, hear what the user hears, sense the user's physical state, and analyze what the user is typing, an intelligent agent may be able to analyze what the user is doing and try to predict the resources he will need next or in the near future. Using this information, the agent may download files, reserve communications bandwidth, post reminders, or automatically send updates to colleagues to help facilitate the user's daily interactions. This intelligent wearable computer would be able to act as a personal assistant, who is always around, knows the user's personal preferences and tastes, and tries to streamline interactions with the rest of the world.

  • PDF