• Title/Summary/Keyword: stereo disparity

Search Result 375, Processing Time 0.025 seconds

Disparity compensation for vergence control of active stereo camera (배경시차 보정을 이용한 스테레오 시각장치의 주시각제어)

  • 박순용;이용범;진성일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.9
    • /
    • pp.67-76
    • /
    • 1997
  • This ppaer describes the development of the stereo camera system(KASS-1) and the control of the vergence of the stereo camera to fix a gaze on a moving object in real-time using a stereo disparity. The motion energy and the stereo disparity of a moving object from the stereo image are used to control the vergence of stereo camera to keep stereo disparity constant. The disparity from the rotating stereo camera is introduced not only from the moving object but also from the background. In this paper, the background disparity error due to the vergence control of the stereo camera is eliminated by compensation algoithm, and the vergence of steereo camera system can be controlled continuously using the disparity of a moving object only.

  • PDF

A Novel Horizontal Disparity Estimation Algorithm Using Stereoscopic Camera Rig

  • Ramesh, Rohit;Shin, Heung-Sub;Jeong, Shin-Il;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • Abstract. Image segmentation is always a challenging task in computer vision as well as in pattern recognition. Nowadays, this method has great importance in the field of stereo vision. The disparity information extracting from the binocular image pairs has essential relevance in the fields like Stereoscopic (3D) Imaging Systems, Virtual Reality and 3D Graphics. The term 'disparity' represents the horizontal shift between left camera image and right camera image. Till now, many methods are proposed to visualize or estimate the disparity. In this paper, we present a new technique to visualize the horizontal disparity between two stereo images based on image segmentation method. The process of comparing left camera image with right camera image is popularly known as 'Stereo-Matching'. This method is used in the field of stereo vision for many years and it has large contribution in generating depth and disparity maps. Correlation based stereo-matching are used most of the times to visualize the disparity. Although, for few stereo image pairs it is easy to estimate the horizontal disparity but in case of some other stereo images it becomes quite difficult to distinguish the disparity. Therefore, in order to visualize the horizontal disparity between any stereo image pairs in more robust way, a novel stereo-matching algorithm is proposed which is named as "Quadtree Segmentation of Pixels Disparity Estimation (QSPDE)".

Hierarchical Stereo Matching with Color Information (영상의 컬러 정보를 이용한 계층적 스테레오 정합)

  • Kim, Tae-June;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.279-287
    • /
    • 2009
  • In this paper, a hierarchical stereo matching with color information is proposed. To generate an initial disparity map, feature based stereo matching is carried out and to generate a final disparity map, hierarchical stereo matching is carried out. The boundary (edge) region is obtained by segmenting a given image into R, G, B and White components. From the obtained boundary, disparity is extracted. The initial disparity map is generated when the extracted disparity is spread to the surrounding regions by evaluating autocorrelation from each color region. The initial disparity map is used as an initial value for generating the final disparity map. The final disparity map is generated from each color region by changing the size of a block and the search range. 4 test images that are provided by Middlebury stereo vision are used to evaluate the performance of the proposed algorithm objectively. The experiment results show better performance compared to the Graph-cuts and Dynamic Programming methods. In the final disparity map, about 11% of the disparities for the entire image were inaccurate. It was verified that the boundary for the non-contiguous point was clear in the disparity map.

Implementation of Disparity Information-based 3D Object Tracking

  • Ko, Jung-Hwan;Jung, Yong-Woo;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.16-25
    • /
    • 2005
  • In this paper, a new 3D object tracking system using the disparity motion vector (DMV) is presented. In the proposed method, the time-sequential disparity maps are extracted from the sequence of the stereo input image pairs and these disparity maps are used to sequentially estimate the DMV defined as a disparity difference between two consecutive disparity maps Similarly to motion vectors in the conventional video signals, the DMV provides us with motion information of a moving target by showing a relatively large change in the disparity values in the target areas. Accordingly, this DMV helps detect the target area and its location coordinates. Based on these location data of a moving target, the pan/tilt embedded in the stereo camera system can be controlled and consequently achieve real-time stereo tracking of a moving target. From the results of experiments with 9 frames of the stereo image pairs having 256x256 pixels, it is shown that the proposed DMV-based stereo object tracking system can track the moving target with a relatively low error ratio of about 3.05 % on average.

Refinements of Multi-sensor based 3D Reconstruction using a Multi-sensor Fusion Disparity Map (다중센서 융합 상이 지도를 통한 다중센서 기반 3차원 복원 결과 개선)

  • Kim, Si-Jong;An, Kwang-Ho;Sung, Chang-Hun;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.298-304
    • /
    • 2009
  • This paper describes an algorithm that improves 3D reconstruction result using a multi-sensor fusion disparity map. We can project LRF (Laser Range Finder) 3D points onto image pixel coordinatesusing extrinsic calibration matrixes of a camera-LRF (${\Phi}$, ${\Delta}$) and a camera calibration matrix (K). The LRF disparity map can be generated by interpolating projected LRF points. In the stereo reconstruction, we can compensate invalid points caused by repeated pattern and textureless region using the LRF disparity map. The result disparity map of compensation process is the multi-sensor fusion disparity map. We can refine the multi-sensor 3D reconstruction based on stereo vision and LRF using the multi-sensor fusion disparity map. The refinement algorithm of multi-sensor based 3D reconstruction is specified in four subsections dealing with virtual LRF stereo image generation, LRF disparity map generation, multi-sensor fusion disparity map generation, and 3D reconstruction process. It has been tested by synchronized stereo image pair and LRF 3D scan data.

  • PDF

The Background Segmentation of the Target Object for the Stereo Vision System (스테레오 비젼 시스템을 위한 표적물체의 배경 분리)

  • Ko, Jung Hwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2008
  • In this paper, we propose a new method that separates background and foreground from stereo images. This method can be improved automatic target tracking system by using disparity map of the stereo vision system and background-separating mask, which can be obtained camera configuration parameters. We use disparity map and camera configuration parameters to separate object from background. Disparity map is made with block matching algorithm from stereo images. A morphology filter is used to compensate disparity error that can be caused by occlusion area. We could obtain a separated object from background when the proposed method was applied to real stereo cameras system.

3D Range Finding Algorithm Using Small Translational Movement of Stereo Camera (스테레오 카메라의 미소 병진운동을 이용한 3차원 거리추출 알고리즘)

  • Park, Kwang-Il;Yi, Jae-Woong;Oh, Jun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.156-167
    • /
    • 1995
  • In this paper, we propose a 3-D range finding method for situation that stereo camera has small translational motion. Binocular stereo generally tends to produce stereo correspondence errors and needs huge amount of computation. The former drawback is because the additional constraints to regularize the correspondence problem are not always true for every scene. The latter drawback is because they use either correlation or optimization to find correct disparity. We present a method which overcomes these drawbacks by moving the stereo camera actively. The method utilized a motion parallax acquired by monocular motion stereo to restrict the search range of binocular disparity. Using only the uniqueness of disparity makes it possible to find reliable binocular disparity. Experimental results with real scene are presented to demonstrate the effectiveness of this method.

  • PDF

Multi-Range Approach of Stereo Vision for Mobile Robot Navigation in Uncertain Environments

  • Park, Kwang-Ho;Kim, Hyung-O;Baek, Moon-Yeol;Kee, Chang-Doo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1411-1422
    • /
    • 2003
  • The detection of free spaces between obstacles in a scene is a prerequisite for navigation of a mobile robot. Especially for stereo vision-based navigation, the problem of correspondence between two images is well known to be of crucial importance. This paper describes multi-range approach of area-based stereo matching for grid mapping and visual navigation in uncertain environment. Camera calibration parameters are optimized by evolutionary algorithm for successful stereo matching. To obtain reliable disparity information from both images, stereo images are to be decomposed into three pairs of images with different resolution based on measurement of disparities. The advantage of multi-range approach is that we can get more reliable disparity in each defined range because disparities from high resolution image are used for farther object a while disparities from low resolution images are used for close objects. The reliable disparity map is combined through post-processing for rejecting incorrect disparity information from each disparity map. The real distance from a disparity image is converted into an occupancy grid representation of a mobile robot. We have investigated the possibility of multi-range approach for the detection of obstacles and visual mapping through various experiments.

Estimation of Disparity Map having Reliability to Changes of Radiometric (Radiometric 특성 변화에 신뢰성을 가지는 Disparity Map 예측)

  • Shin, Kwang-mu;Kim, Sung-min;Cho, Mi-sook;Chung, Ki-dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.93-96
    • /
    • 2015
  • The aim of the estimation of disparity map is to find the corresponding pixels from similar two or more images. However, it is a difficult problem to get precise and consistent disparity under a variety of real world situations. In other words, the color values of stereo images are easily influenced by radiometric properties such as illumination direction, illumination color, and camera exposure. Therefore, conventional stereo matching methods can have low performances under radiometric conditions. In this paper, we propose an approaching of disparity map estimation that is reliable in controlling various radiometric variations close to the real environment. This method is motivated by following constancy. Even though each other has different radiometric property in stereo images, intensity of pixels of object have general constancy in specific block. Experimental results show that the proposed method has better performances compared to the comparison group under different radiometric conditions between stereo images. Consequentially, the proposed method is able to estimate the disparity map in stable under various radiometric variations.

  • PDF

Hierarchical stereo matching using feature extraction of an image

  • Kim, Tae-June;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.99-102
    • /
    • 2009
  • In this paper a hierarchical stereo matching algorithm based on feature extraction is proposed. The boundary (edge) as feature point in an image is first obtained by segmenting an image into red, green, blue and white regions. With the obtained boundary information, disparities are extracted by matching window on the image boundary, and the initial disparity map is generated when assigned the same disparity to neighbor pixels. The final disparity map is created with the initial disparity. The regions with the same initial disparity are classified into the regions with the same color and we search the disparity again in each region with the same color by changing block size and search range. The experiment results are evaluated on the Middlebury data set and it show that the proposed algorithm performed better than a phase based algorithm in the sense that only about 14% of the disparities for the entire image are inaccurate in the final disparity map. Furthermore, it was verified that the boundary of each region with the same disparity was clearly distinguished.

  • PDF