• Title/Summary/Keyword: stereo analysis

Search Result 305, Processing Time 0.029 seconds

The Use of Advanced Optical Measurement Methods for the Mechanical Analysis of Shear Deficient Prestressed Concrete Members

  • Wilder, K. De;Roeck, G. De;Vandewalle, L.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.189-203
    • /
    • 2016
  • This paper investigates on the use of advanced optical measurement methods, i.e. 3D coordinate measurement machines (3D CMM) and stereo-vision digital image correlation (3D DIC), for the mechanical analysis of shear deficient prestressed concrete members. Firstly, the experimental program is elaborated. Secondly, the working principle, experimental setup and corresponding accuracy and precision of the considered optical measurement techniques are reported. A novel way to apply synthesised strain sensor patterns for DIC is introduced. Thirdly, the experimental results are reported and an analysis is made of the structural behaviour based on the gathered experimental data. Both techniques yielded useful and complete data in comparison to traditional mechanical measurement techniques and allowed for the assessment of the mechanical behaviour of the reported test specimens. The identified structural behaviour presented in this paper can be used to optimize design procedure for shear-critical structural concrete members.

A Study on the Method for Three-dimensional Geo-positioning Using Heterogeneous Satellite Stereo Images (이종위성 스테레오 영상의 3차원 위치 결정 방법 연구)

  • Jaehoon, Jeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • This paper suggests an intersection method to improve the accuracy of three-dimensional position from heterogeneous satellite stereo images, and addresses validation of the suggested method following the experimental results. The three-dimensional position is achieved by determining an intersection point of two rays that have been precisely adjusted through the sensor orientation. In case of conventional homogeneous satellite stereo images, the intersection point is generally determined as a mid-point of the shortest line that links two rays in at least square fashion. In this paper, a refined method, which determines the intersection point upon the ray adjusted at the higher resolution image, was used to improve the positioning accuracy of heterogeneous satellite images. Those heterogeneous satellite stereo pairs were constituted using two KOMPSAT-2 and QuickBird images of covering the same area. Also, the positioning results were visually compared in between the conventional intersection and the refined intersection, while the quantitative analysis was performed. The results demonstrated that the potential of refined intersection improved the positioning accuracy of heterogeneous satellite stereo pairs; especially, with a weak geometry of the heterogeneous satellite stereo, the greater effects on the accuracy improvement.

A Study on Scale-Invariant Features Extraction and Distance Measurement for Localization of Mobile Robot (이동로봇의 위치 추정을 위한 스케일 불변 특징점 추출 및 거리 측정에 관한 연구)

  • Jung, Dae-Seop;Jang, Mun-Suk;Ryu, Je-Goon;Lee, Eung-Hyuk;Shim, Jae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.625-627
    • /
    • 2005
  • Existent distance measurement that use camera is method that use both Stereo Camera and Monocular Camera, There is shortcoming that method that use Stereo Camera is sensitive in effect of a lot of expenses and environment variables, and method that use Monocular Camera are big computational complexity and error. In this study, reduce expense and error using Monocular Camera and I suggest algorithm that measure distance, Extract features using scale Invariant features Transform(SIFT) for distance measurement, and this measures distance through features matching and geometrical analysis, Proposed method proves measuring distance with wall by geometrical analysis free wall through feature point abstraction and matching.

  • PDF

Stereoscopic observations of front-side halo CMEs by SOHO and STEREO from 2009 to 2013

  • Jang, Soojeong;Moon, Yong-Jae;Kim, Roksoon;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2015
  • We present a comprehensive catalog of 307 front-side halo (partial and full) CMEs during 2009 and 2013 observed by both SOHO and STEREO. This catalog includes 2D CME properties from single spacecraft (SOHO) as well as 3D ones from multi-spacecraft. To determine the 3D CME properties (speed, angular width, and source location), we use the STEREO CME analysis tool based on a triangulation method. In this paper, we compare between 2D and 3D CME properties, which is the first statistical comparison between them. As a result, we find that 2D speeds tend to be about 20% underestimated when compared to 3D ones. The 3D angular width ranges from $15^{\circ}$ to $109^{\circ}$, which are much smaller than the 2D angular widths with the mean value of $225^{\circ}$. We also find that a ratio between 2D and 3D angular width decreases with central meridian distance. The 3D source locations from the triangulation method are similar to the flare locations. The angular width-speed relationship in 3D is much stronger than that in 2D.

  • PDF

3D Feature Based Tracking using SVM

  • Kim, Se-Hoon;Choi, Seung-Joon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1458-1463
    • /
    • 2004
  • Tracking is one of the most important pre-required task for many application such as human-computer interaction through gesture and face recognition, motion analysis, visual servoing, augment reality, industrial assembly and robot obstacle avoidance. Recently, 3D information of object is required in realtime for many aforementioned applications. 3D tracking is difficult problem to solve because during the image formation process of the camera, explicit 3D information about objects in the scene is lost. Recently, many vision system use stereo camera especially for 3D tracking. The 3D feature based tracking(3DFBT) which is on of the 3D tracking system using stereo vision have many advantage compare to other tracking methods. If we assumed the correspondence problem which is one of the subproblem of 3DFBT is solved, the accuracy of tracking depends on the accuracy of camera calibration. However, The existing calibration method based on accurate camera model so that modelling error and weakness to lens distortion are embedded. Therefore, this thesis proposes 3D feature based tracking method using SVM which is used to solve reconstruction problem.

  • PDF

Improved Disparity Map Computation on Stereoscopic Streaming Video with Multi-core Parallel Implementation

  • Kim, Cheong Ghil;Choi, Yong Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.728-741
    • /
    • 2015
  • Stereo vision has become an important technical issue in the field of 3D imaging, machine vision, robotics, image analysis, and so on. The depth map extraction from stereo video is a key technology of stereoscopic 3D video requiring stereo correspondence algorithms. This is the matching process of the similarity measure for each disparity value, followed by an aggregation and optimization step. Since it requires a lot of computational power, there are significant speed-performance advantages when exploiting parallel processing available on processors. In this situation, multi-core CPU may allow many parallel programming technologies to be realized in users computing devices. This paper proposes parallel implementations for calculating disparity map using a shared memory programming and exploiting the streaming SIMD extension technology. By doing so, we can take advantage both of the hardware and software features of multi-core processor. For the performance evaluation, we implemented a parallel SAD algorithm with OpenMP and SSE2. Their processing speeds are compared with non parallel version on stereoscopic streaming video. The experimental results show that both technologies have a significant effect on the performance and achieve great improvements on processing speed.

Analysis of Tilting Angle of KOMPSAT-1 EOC Image for Improvement of Geometric Accuracy Using Bundle Adjustment

  • Seo, Doo-Chun;Lee, Dong-Han;Kim, Jong-Ah;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.780-785
    • /
    • 2002
  • As the KOMPSAT-1 satellite can roll tilt up to $\pm$45$^{\circ}$, we have analyzed some EOC images taken at different tilt angles fur this study. The required ground coordinates for bundle adjustment and geometric accuracy, are read from the digital map produced by the National Geography Institution, at a scale of 1:5, 000. These are the steps taken for the tilting angle of KOMPSAT-1 satellite to be present in the evaluation of the accuracy of the geometric of each different stereo image data: Firstly, as the tilting angle is different in each image, the satellite dynamic characteristic must be determined by the sensor modeling. Then the best sensor modeling equation is determined. The result of this research, the difference between the RMSE values of individual stereo images is due more the quality of image and ground coordinates than to the tilt angle. The bundle adjustment using three KOMPSAT-1 stereo pairs, first degree of polynomials for modeling the satellite position were sufficient.

  • PDF

Dependence of the peak fluxes of solar energetic particles on CME parameters and magnetic connectivity

  • Park, Jinhye;Moon, Yong-Jae;Lee, Harim;Kahler, S.W.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.82.3-83
    • /
    • 2017
  • We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO, STEREO-A and/or B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angle between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of Parker spiral field. The main results are as follows. 1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multi-spacecraft is similar to that on 2D CME speed. 2) There is a positive correlation between SEP peak flux and 3D angular width from multi-spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. 3) There is a noticeable anti-correlation (r=-0.62) between SEP peak flux and separation angle. 4) The multiple regression method between SEP peak fluxes and CME parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.

  • PDF

Improvement of the Stereo Vision-Based Surface-Strain Measurement System for Large Stamped Parts (중.대형 판재성형 제품의 곡면변형률 측정을 위한 스테레오 비전 시스템의 개선)

  • 김형종;김두수;김헌영
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.404-412
    • /
    • 2000
  • It is desirable to use the square grid analysis with the aid of the stereo vision and image processing techniques in order to automatically measure the surface-strain distribution over a stamped part. But this method has some inherent problems such as the difficulty in enhancement of bad images, the measurement error due to the digital image resolution and the limit of the area that can be measured at a time. Therefore, it is still hard to measure the strain distribution over the entire surface of a medium-or large-sized stamped part even by using an automated strain measurement system. In this study, several methods which enable to solve these problems considerably without losing accuracy and precision In measurement are suggested. The superposition of images that have different high-lightened or damaged part from each other gives much enhanced image. A new algorithm for constructing of the element connectivity from the line-thinned image helps recognize up to 1,000 elements. And the geometry assembling algorithm including the global error minimization makes it possible to measure a large specimen with reliability and efficiency.

  • PDF