• Title/Summary/Keyword: stepped spillway

Search Result 4, Processing Time 0.017 seconds

EXPERIMENTAL STUDY OF TURBULENCE MANIPULATION IN STEPPED SPILLWAYS. IMPLICATIONS ON FLOW RESISTANCE IN SKIMMING FLOWS

  • GONZALEZ CARLOS A.;CHANSON HUBERT
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09a
    • /
    • pp.588-589
    • /
    • 2005
  • Current expertise in air-water turbulent flows on stepped chutes is limited to laboratory experiments at low to moderate Reynolds numbers on flat horizontal steps. In this study, highly turbulent air-water flows skimming down a large-size stepped chute were systematically investigated with a $22^{\circ}$ slope (Fig. 1). Turbulence manipulation was conducted using vanes or longitudinal ribs to enhance interactions between skimming flows and cavity recirculating regions (Fig. 2). Systematic experiments were performed with seven configurations. The results demonstrated the strong influence of vanes on the air-water flow. An increase in flow resistance was observed consistently with maximum flow resistance achieved with vanes placed in a zigzag pattern.

  • PDF

Numerical Modeling of Wave-Type Turbulent Flow on a Stepped Weir (계단형 보에서의 파형 난류 흐름 수치모의)

  • Paik, Joongcheol;Lee, Nam-Ju;Yoon, Young Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.575-583
    • /
    • 2017
  • Various types of flow patterns around the stepped weir and spillway, such as the skimming flow over such structures and the wave-type flow with a standing undular hydraulic jump and roller downstream of the structures, are developed in open channels. Unsteady three-dimensional numerical simulations are carried out using a hybrid RANS-LES turbulence modeling approach and the volume of fluid method for resolving free surface fluctuations to represent the turbulent flow including the skimming flow and wave-type flow over a stepped weir installed in a rectangular channel. The comparison of numerical results with an existing experimental measurement reveals that the present numerical simulations reasonably well reproduce the turbulent flow passing the stepped weir, in terms of time-averaged velocity profiles at selected locations downstream of the weir, flow topology characterized by the wave-type and skimming flows, the maximum height and length of the standing wave and the length of reattachment of recirculating zone. The numerical result further elucidates the distinct flow behaviors of the wave-type and skimming flow by presenting instantaneous intense variations of free surface and velocity vectors, the distributions of Reynolds shear stress and turbulent kinetic energy and three-dimensional complex features of coherent structures and total pressure distribution.