• Title/Summary/Keyword: step speed

Search Result 1,441, Processing Time 0.025 seconds

Effects of trunk control robot training on balance and gait abilities in persons with chronic stroke

  • Lim, Chae-gil
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • Objective: To investigate the effects of training using a trunk control robot (TCR) system combined with conventional therapy (CT) on balance and gait abilities in persons with chronic stroke. Design: Two-group pretest-posttest design. Methods: Thirty-five subjects with chronic stroke were randomly assigned to either the TCR group (n=17) or the trunk extension-training (TET) group (n=18). Both groups performed CT for 30 minutes, after which the TCR group performed TCR training and the TET group performed trunk extension training for 20 minutes. Both groups performed the therapeutic interventions 3 days per week for 6 weeks. Balance ability was evaluated using the Berg Balance Scale (BBS), and the Timed Up-and-Go (TUG) test. Gait ability was measured using the 10 m Walk Test (10MWT) and the NeuroCom Smart Balance Master. Results: TCR group showed significant improvements in static balance (weight bearing) and dynamic balance (weight shifting speed, weight shifting direction, BBS, and TUG), 10MWT, gait speed, and step width (p<0.05); step length was not significant. The TET group showed a significant partial improvement of dynamic balance (weight shifting speed, weight shifting direction, BBS, and 10MWT (p<0.05), but the improvements in static balance, TUG, gait speed, and step width and step length was not significant. Additionally, significant differences in static balance, dynamic balance (weight shifting speed, weight shifting direction, BBS, and TUG), 10MWT, gait speed, and step width were detected between groups (p<0.05). Conclusions: TCR training combined with CT is effective in improving static and dynamic balance, as well as gait abilities in persons with chronic stroke.

Multi-step Optimization of the Moving Body for the High Speed Machinining Center using Weighted Method and G.A. (가중치방법과 유전알고리즘을 이용한 금형가공센터 고속이송체의 다단계 최적설계)

  • 최영휴;배병태;강영진;이재윤;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.23-27
    • /
    • 1997
  • This paper introduces the structural design optimization of a high speed machining center using multi-step optimization combined with G.A.(Genetic Algorithm) and Weighted Method. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. Dimensional thicknesses of the thirteen structural members of the machine structure are adopted as design variables. The first step is the cross-section configuration optimization, in which the area moment of inertia of the cross-section for each structural member is maximized while its area is kept constant The second step is a static design optimization, In which the static compliance and the weight of the machine structure are minimized under some dimensional and safety constraints. The third step IS a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints. After optunization, static and dynamic compliances were reduced to 62.3% and 95.7% Eorn the initial design, while the weight of the moving bodies are also in the feaslble range.

  • PDF

A study on high speed control of step motor using current source (전류원을 이용한 스텝 모타의 고속 제어에 관한 연구)

  • 오동성;김종준;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.594-596
    • /
    • 1987
  • In this study, a method of obtaining reasonably large and constant torque at high speed is given in order to improve the performance of the open loop controlled step motor system using the current source, thus resulting in high performance compared to the conventional current limiting using resistor and chopper.

  • PDF

Parameter Estimation for Step Motor using RLS Algorithm (RLS알고리즘을 이용한 스텝 모터의 파라미터 추정)

  • Yon, Tae-Jun;Kim, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.785-787
    • /
    • 1999
  • In this paper, recursive least square algorithm is presented to estimate the parameters of step motor under low-speed operation. Parameter estimation is important for compensating the input current by calculating the ratio of the motor torque constant and detent torque constant that causes torque-ripple in low-speed applications. On-line parameter estimation process is a preliminary procedure to apply step motor to adaptive control. Computer simulation shows that the estimated parameters converge in finite time.

  • PDF

Cost-Benefit Analysis of Electrical Safety Speed-call Service Using Electrical Fire Statistics Analysis and Outcome Analysis Logic Model (전기화재 통계 및 성과 분석 모델을 이용한 전기안전 긴급출동 고충처리 서비스의 비용 편익 분석)

  • Jeon, Jeong Chay;Yoo, Jae-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1943-1947
    • /
    • 2016
  • Korea Electrical Safety Cooperation(KESCO) have provided the electrical safety speed-call service from 2007 year. Purpose of the service is to reduce discomfort of electricity use and to prevent electrical accident like as electrical fire and shock accident by providing emergency treatment service on fault of the residential electrical facilities notified in the specific house like as a lower-income group and a social welfare facility. But efficiency and economic evaluation of the electrical safety speed-call service is impossible because analysis on the quantitative effect of the service is difficult. This paper presents cost-benefit analysis method and result of the electrical safety speed-call service. The presented cost-benefit analysis method has a two-step process: the first step is to measure quantitative electrical fire prevention effect of the service by using electrical accident statistics and developing outcome analysis logic model of the service effect, and the second step is to analysis cost-benefit(B/C)of the service by calculating quantitative benefit analysis on the measured quantitative electrical fire prevention effect. The results showed that cost-benefit(B/C)of the electrical safety speed-call service is over 4 after 2010 year.

Monitoring and Control of the Air Spindle Based Microdrilling Using Spindle Speed Variations (주축속도변동을 이용한 공기회전축식 미세구멍가공의 감시제어)

  • 안중환;김화영;이응숙;오정욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1176-1181
    • /
    • 1995
  • Microdrilling is one of the most difficult operations because of the poor chip discharge and the weakness of tool. This study is concerned about the development of a microdrilling monitoring system that is useful for minimizing the tool breakage and enhancing the machinability in the air spindle based microdrilling. The system is composed of a drilling state detection unit and an adaptive step-feed control unit that controls the micro-stepping motor driven spindle axis. Drilling states such as overload, tood breakage are recognized by the change of the air spindle speed which is measured via the reflective photo sensor. Based on the monitoring results, the adaptive step-feed control algorithm adjusts the step increment to keep the decrease of spindle speed within a specified range. The results of evaluation tests have shown that the developed system is very effective to prevent the breakage of microdrill and improves the productivity in comparison with the conventional microdrilling.

Resistance Reduction of a High Speed Small Boat by Air Lubrication

  • Jang Jin-Ho;Kim Hyo-Chul
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • The resistance reduction by an air lubrication effect of a large air cavity covering the hull bottom surface and the similarity relations involved have been investigated with a series of towing tank tests of three geometrically similar models. The test results of geometrically similar models have indicated that a large air cavity was formed beneath the bottom having a backward-facing step by artificially supplying air is effective for resistance reduction. The areas of air cavity and the required flow rates of air are directly related to the effective wetted surface area. The traditional extrapolation methods seem to be applicable to the estimation of the resistance in the tested range if corrections are made to account the changes in the frictional resistance caused by the changes in the effective wetted surface area. To investigate the effectiveness of air lubrication in improving the resistance performance of a practical ship, a small test boat having a backward-facing step under its bottom has been manufactured and speed trials in a river have been performed. Air has been supplied artificially into the downstream region of the bottom step to form a large air cavity covering the bottom surface. The results have confirmed the practical applicability of air lubrication for the resistance reduction of a small high-speed boat.

Speed Control of Permanent Magnet Synchronous Motor using Limited Step Response Characteristics (한계계단 응답특성을 이용한 영구자석형 동기전동기 속도제어)

  • 전인효;최중경;박승엽
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.295-302
    • /
    • 1998
  • In this paper, a new auto-tuning PI controller for the speed servo system of a PMSM is designed by using limited step response characteristics. The method is proposed that gets information about auto-tuning of PI regulator by the injection of step input, called limited input, during a transient response time of control. System parameter estimation and speed control could be continuously executed. This means that in despite of system uncertainty the system information obtained by limited input can be continuously applied to the PI regulator. We demonstrate the effectiveness of the proposed auto-tuning algorithm through simulation and experiment result of the speed control for a PMSM having monotone increasing step response.

  • PDF

A Study on Engine Speed Control Using Microcomputer (마이크로 컴퓨터를 이용(利用)한 엔진회전속도(回轉速度) 제어(制御)에 관한 연구(硏究))

  • Min, Y.B.;Lee, K.M.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.1
    • /
    • pp.17-23
    • /
    • 1986
  • Speed control of kerosene engine by the combination of a manual throttle and centrifugal weight type governor is not adequate for evaluating energy requirements in laboratory and field performance tests. This paper describes an engine speed control system. This system consists of Apple-II microcomputer, step motor set to the throttle shaft directly, step motor driving and interfacing circuit, engine performance data acquisition system for measuring load, speed and time and potentiometer as speed adjustor. The performance of this system was successful in maintaining engine speed within ${\pm}37$ rpm of reference speed indicated by computer and potentiometer.

  • PDF

Adaptive Backstepping Controller Design for a Separately Excited DC Motor Using Speed Observer (속도관측기를 활용한 타여자직류전동기의 적응 백스테핑 제어기 설계)

  • Hyun Keun-Ho;Yang Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.385-392
    • /
    • 2003
  • A nonlinear speed controller for a separately excited DC motor (SEDCM) based on a newly developed adaptive backstepping approach is presented. To compensate parameter uncertainties and load torque disturbance, a nonlinear adaptive backstepping control law and adaptive law are derived systematically step by step through virtual control input and suitable Lyapunov function. Also, speed observer without using costly speed sensor is presented. Simulation results show that the proposed controller can observe real speed and track the reference speed signal generated by a reference model.