• Title/Summary/Keyword: stem curve function

Search Result 9, Processing Time 0.025 seconds

Regional Stem Curve and Volume Function Model of Pinus densiflora in Kangwon-Province (강원도 지방 소나무의 지역(地域) 간곡선(幹曲線) 및 재적식(材積式) 모델)

  • Kim, Joon Soon;Lee, Woo Kyun;Byun, Woo Hyuk
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.4
    • /
    • pp.521-530
    • /
    • 1994
  • Voume functions, which are usually expressed by the function of dbh and height, are estimated commonly through the regression analysis with the highest statistical accuracy considered. In Korea, general volume functions for each tree species were prepared by means of the regression analysis with the exponential function ($V=aD^bH^c$) having the dbh(D) and height(H) as independent variables. In this study, regional stem curve functions for the Pinus densiflora in Kangwon-province were derived and a regional volume function model, in which the stem volume can be directly estimated through the rotational integral of the regional stem curve functions, was prepared. The regional volume estimated by the prepared model was more accurate than the volume by the general volume table for the Pinus densiflora in Kangwon-province. Additionary, the form of stem curves derived by the regional stem curve functions showed difference from each other. The stem in Youngwol and Wonju taper down more fast in upper part than that in other regions. These various stem forms also led to the regional difference in volume estimates.

  • PDF

Stem and Stand Taper Model Using Spline Function and Linear Equation (Spline 함수(函數)와 선형방정식(線型方程式)을 이용한 수간(樹幹) 및 임분간곡선(林分幹曲線)모델)

  • Lee, Woo Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.1
    • /
    • pp.63-74
    • /
    • 1994
  • One of the essential factors to estimate the stem and stand growth is to correctly portray a stem form (profile). It is also required to numerically approximate a stem form in order to dynamically grasp and represent a stand growth. A whole stem form seems to be a conical form but a stem outline at various positions tapers off differently. Accordingly it is difficult to model a whole stand form with single taper equation. A stem taper equation with different coefficients on each subinterval can be useful tools to accurately portray a stem form. This article presents the derivation method of individual stem taper curve using spline function. It is also in this paper aimed to study how a stand taper curve car, be derived from the population of single stem taper curve in a stand. These taper equations numerically formulated enable to dynamically represent and prognosticate the development process of a stand and prepare the foundation of variety on growth model study and rational forest planning model.

  • PDF

A Development of Stem Analysis Program and its Comparison with other Method for Increment Calculation (수간석해(樹幹析解) 전산(電算)프로그램 개발(開發) 및 생장량(生長量) 계산방법(計算方法)의 비교(比較)에 관(關)한 연구(硏究))

  • Byun, Woo Hyuk;Lee, Woo Kyun;Yun, Kwang Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.1
    • /
    • pp.1-15
    • /
    • 1990
  • In this study the stem analysis program, which can be operated with personal computer was developed to reduce time and cost of calculation, and to increase accuracy of analysis. The stem analysis method used in this program was compared with other methods. The results obtained were as follows : The value, 1/100mm measured from the latest annual ring measurement machine (Jahrringme${\beta}$geraete Johan Type II) was automatically inputed to the computer and saved into given file name. Turbo Pascal program was written to do this. The measured data was analyzed by stem analysis calculation program written by Fortran-77. Volume and height increments were approximated by spline function, and diameter of the stem disk was calculated by quadratic mean method. The increment values calculated by the programs were printed annually and in every five-year. Stem analysis diagram and several increment graphs were also easily printed. The result compared between those analysis methods showed that quadratic mean could reduce the error caused from eccentric pith. When the stem taper curve method, approximated by spline function, was used in the calculation of tree height and volume, increments would be more exactly calculated.

  • PDF

Relationship between Maximum Stem Volume and Density during a Course of Self-thinning in a Cryptomeria japonica Plantation

  • Ogawa, Kazuharu;Hagihara, Akio
    • The Korean Journal of Ecology
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2004
  • Cryptomeria japonica plantation was monitored every year during 15 years from 1983 to 1997 for stem diameter and volume. The reciprocal equation, 1/Y = A + B/N, was applied to the relationship between cumulative volume Y and cumulative number N from the largest tree in the stand each year. The parameters A and B, which means respectively the reciprocal of an asymptotic value of total stand stem volume and the reciprocal of the maximum stem volume, are related by a power function. The power functional relationship between A and B derived a linear relationship of B-points ( $N_{B}$, $V_{B}$; $N_{B}$ = B/A, $Y_{B}$ = 1/2A) of each Y-N curve on log-log coordinates. The gradient of B-point line was so steep that the Y-N curve moved parallel upward year by year. The time trajectory of mean stem volume (W) and density ($\rho$) provided evidence in favor of the 3/2 power law of self-thinning, because the gradient of W - $\rho$ trajectory on log-log coordinates approximated to -3/2 at the final stage of stand development. On the basis of the results of Y-N curves and W - $\rho$ trajectory, the time trajectory of maximum stem volume $W_{max obs}$ and $\rho$ was derived theoretically. The gradient of $W_{max obs}$ - $\rho$ trajectory on log-log coordinates is calculated to be -0.6105 at the final stage. The gradient of $W_{max obs}$ - $\rho$ trajectory was steeper than that of W - $\rho$ trajectory at the early stage, while the former is gentler than the latter at the later stage.stage.e.age.e.

Estimation Model and Vertical Distribution of Leaf Biomass in Pinus sylvestris var. mongolica Plantations

  • Liu, Zhaogang;Jin, Guangze;Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.576-583
    • /
    • 2009
  • Based on the stem analysis and biomass measurement of 36 trees and 1,576 branches in Pinus sylvestris var. mongolica (Mongolian pine) plantations of Northeast China, this study was conducted to develop estimation model equation for leaf biomass of a single tree and branch, to examine the vertical distribution of leaf biomass in the crown, and to evaluate the proportional ratios of biomass by tree parts, stem, branch, and leaf. The results indicated that DBH and crown length were quite appropriate to estimate leaf biomass. The biomass of single branch was highly correlated with branch collar diameter and relative height of branch in the crown, but not much with stand density, site quality, and tree height. Weibull distribution function would have been appropriate to express vertical distribution of leaf biomass. The shape parameters from 29 sample trees out of 36 were less than 3.6, indicating that vertical distribution of leaf biomass in the crown was displayed by bell-shaped curve, a little inclined toward positive side. Apparent correlationship was obtained between leaf biomass and branch biomass having resulted in linear function equation. The stem biomass occupied around 80% and branch and leaf made up about 20% of total biomass in a single tree. As the level of tree class was increased from class I to class V, the proportion of the stem biomass to total biomass was gradually increased, but that of branch and leaf became decreased.

Mid-term (2009-2019) demographic dynamics of young beech forest in Albongbunji Basin, Ulleungdo, South Korea

  • Cho, Yong-Chan;Sim, Hyung Seok;Jung, Songhie;Kim, Han-Gyeoul;Kim, Jun-Soo;Bae, Kwan-Ho
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.241-255
    • /
    • 2020
  • Background: The stem exclusion stage is a stage of forest development that is important for understanding the subsequent understory reinitiation stage and maturation stage during which horizontal heterogeneity is formed. Over the past 11 years (2009-2019), we observed a deciduous broad-leaved forest in the Albongbunji Basin in Ulleungdo, South Korea in its stem exclusion stage, where Fagus engleriana (Engler's beech) is the dominant species, thereby analyzing the changes in the structure (density and size distributions), function (biomass and species richness), and demographics. Results: The mean stem density data presented a bell-shaped curve with initially increasing, peaking, and subsequently decreasing trends in stem density over time, and the mean biomass data showed a sigmoidal pattern indicating that the rate of biomass accumulation slowed over time. Changes in the density and biomass of Fagus engleriana showed a similar trend to the changes in density and biomass at the community level, which is indicative of the strong influence of this species on the changing patterns of forest structure and function. Around 2015, a shift between recruitment and mortality rates was observed. Deterministic processes were the predominant cause of tree mortality in our study; however, soil deposition that began in 2017 in some of the quadrats resulted in an increase in the contribution of stochastic processes (15% in 2019) to tree mortality. The development of horizontal heterogeneity was observed in forest gaps. Conclusions: Our observations showed a dramatic shift between the recruitment and mortality rates in the stem exclusion stage, and that disturbance increases the uncertainty in forest development increases. The minor changes in species composition are likely linked to regional species pool and the limited role of the life-history strategy of species such as shade tolerance and habitat affinity. Our midterm records of ecological succession exhibited detailed demographic dynamics and contributed to the improvement of an ecological perspective in the stem exclusion stage.

Computer Aided Design of the Fore and After Body of Fishing Vessel by Using B-Spline (B-Spline을 이용한 어선의 선수미부 초기 선형 설계)

  • Kim, Dong-Jun;Hong, Bong-Gi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.75-82
    • /
    • 1991
  • The present paper describes a preliminary design method by using the computer graphics for creation of the fore and after body profiles of fishing vessel. It is well known that the Form Parameter design method has some merits at an early stage of design, and the B-spline curve generation technique has some prior properties in representing hull form with the computer graphic. The B-spline curve generation technique combined with the form parameter design method is employed to generate the profiles of fishing vessel. For fore body the stem profiles with bulbous bulb or without one are considered. And for after body the stern profiles of cruiser type and the transom type are generated with stern bulb or with shoe piece. Several examples will shown.

  • PDF

Evaluation of the Femoral Stem Implant in Canine Total Hip Arthroplasty: A Cadaver Study

  • Cho, Hyoung Sun;Kwon, Yonghwan;Kim, Young-Ung;Kang, Jin-Su;Lee, Kichang;Kim, Namsoo;Kim, Min Su
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • Total hip arthroplasty (THA) is a successful surgical treatment for both patients with chronical lameness and dogs who are nonresponsive to medical treatments, providing excellent joint function for returning dogs to the normal gait in 80% to 98% of hip dysplasia (HD) patients. The THA surgical implant system manufactured by BioMedtrix and Kyon are today widely accepted. When comparing the BioMedtrix biological fixation (BFX) system to the BioMedtrix cemented fixation (CFX) system, the many advantages of BFX, which include longer potential implant life, decreased risk of postoperative or later infection, and better implant stability, become evident. However, BFX implies a greater risk of femoral fracture during reaming and requires a more precise surgical technique to achieve good implant fit, given the press-fit nature of cementless THA. The purposes of this study are to both describe the mistakes and complications during stem implantation for beginner surgeons with both the BFX and the CFX systems and to document the initial result of 12 implantations in canine cadavers. Given the detailed evaluations of 3 specialists, who are Diplomate American College of Veterinary Surgeons (DACVS), only 3 of 11 stems were appropriately sized. Specifically, 6 stems were anteverted rather than being retroverted; further, although 7 stems were coaxial with the femoral long axis in the frontal plane, the other stems were in the varus at the frontal plane, with the proximal medial stem adjacent to the medial femoral cortex. Moderate angulation from the cranial to the caudal directions was found in 4 cases in the sagittal plane. Additionally, 1 case of femoral fissure and 1 case of perforated femoral cortex were reported. It is not easy for surgeons performing cementless THA for the first time to achieve a good result, even though they completed an educational course about it and given that catastrophic complications often occurred during early surgical clinical cases. Therefore, ex-vivo studies are sincerely required to get an expertise by rehearsing the preparation of the femoral envelop in isolated bones. Further studies should be conducted to achieve both highly accurate implant size and correct orientation during the preoperative planning. Additionally, surgeons' learning curve should be examined in future investigations.

Targeted busulfan and fludarabine-based conditioning for bone marrow transplantation in chronic granulomatous disease

  • Ju, Hee Young;Kang, Hyoung Jin;Hong, Che Ry;Lee, Ji Won;Kim, Hyery;Song, Sang Hoon;Yu, Kyung-Sang;Jang, In-Jin;Park, June Dong;Park, Kyung Duk;Shin, Hee Young;Kim, Joong-Gon;Ahn, Hyo Seop
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.57-59
    • /
    • 2016
  • Chronic granulomatous disease (CGD) is a primary immunodeficiency disease caused by impaired phagocytic function. Hematopoietic stem cell transplantation (HSCT) is a definitive cure for CGD; however, the use of HSCT is limited because of associated problems, including transplantation-related mortality and engraftment failure. We report a case of a patient with CGD who underwent successful HSCT following a targeted busulfan and fludarabine reduced-toxicity myeloablative conditioning. Intravenous busulfan was administered once daily for 4 consecutive days (days -8 to -5), and the target area under the curve was $75,000{\mu}g{\cdot}hr/L$. Fludarabine ($40mg/m^2$) was administered once daily for 6 consecutive days from days -8 to -3. Antithymocyte globulin (2.5 mg/kg/day) was administered from days -4 to -2. The patient underwent successful engraftment and did not have any severe toxicity related to the transplantation. Conditioning with a targeted busulfan and fludarabine regimen could provide a better outcome for HSCT in CGD, with close regulation of the busulfan dose.