• Title/Summary/Keyword: stem blight

Search Result 108, Processing Time 0.028 seconds

Isolation and Partial Characterization of Phytotoxic Mycotoxins Produced by Sclerotinia sp., a Potential Bioherbicide for the Control of White Clover(Trifoliorum repens)

  • Hong, Yeon-Kyu;Lee, Bong-Choon;Jung, Won-Kwon;Bae, Soon-Do;Park, Sung-Tae;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.52-57
    • /
    • 2004
  • Sclerotinia sp. (isolate BWC98-105) causes stem blight and root rot in Leghum sp., and is presently being evaluated as a potential mycoherbicide for the control of Trifoliorium repens. Bioassays have shown that Sclerotinia sp. produces phytotoxic substance which is biologically active against T. repens. Two biologically active compounds, designated as compoundsI and II, were produced in vitro from the culture filtrate of BWC98-105 isolate Sclerotium sp. Compounds I and II were purified by means of liquid-liquid extraction and $C_{18}$ open column chromatography (300 ${\times}$ 30 mm, i.d). To determine the purity, the purified compounds were analyzed by RP-HPLC. The analytical RP-HPLC column was a TOSOH ODS-120T (150 ${\times}$ 4.6 mm i.d, Japan), of which the flow rate was set at 0.7 mL/min using the linear gradient solvent system initiated with 15 % methanol to 85 % methanol for 50 min with monitoring at 254 nm. Under these RP-HPLC conditions, compounds I and II eluted at 3.49 and 4.13 min, respectively. Compound II was found to be most potent and host specific. However, compound I had a unique antibiotic activity against phytopathogenic bacteria like bacterial leaf blight (Xanthomonas oryzae) on rice, where it played a less important role in producing toxicity on T. repens. No toxin activity was detected in the water fraction after partitioning with several organic solvents. However, toxin activity was detected in the ethyl acetate and butanol fractions. In the leaf bioassay using compound II, the disease first appeared within 4-5 h as water soaked rot, which subsequently developed into well-defined blight affecting the whole plant.

Development of the Microbial Consortium for the Environmental Friendly Agriculture by the Antagonistic Rhizobacteria (다기능 PGPR 균주들의 기작별 상호보완형 컨소시엄 구성을 통한 고추역병 방제 및 고추생장촉진)

  • Lim, Jong-Hui;Jung, Hee-Young;Kim, Sang-Dal
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.3
    • /
    • pp.116-120
    • /
    • 2009
  • We found out the new method of the consortium for the environmental friendly agriculture by 8 kinds of the selected antagonistic rhizobacteria. This research involved composition of mutual complementary consortium by each antagonistic function such as production of antibiotic, siderophore, antifungal cellulase and insoluble phosphate solubilization. The consortium No.11 among composed consortium candidates showed the most pepper growth promoting activity and Phytophthora blight suppression on the in vivo pot test of red-pepper plant. The consortium No. 11 is combination of PGPR Bacillus subtilis AH18 and Bacillus licheniformis K11. B. subtilis AH18 and B. licheniformis K11 both could produce the auxin, antifungal ${\beta}$-glucannase and siderophore. Also, they had mechanism for solubilization of insoluble phosphate. But, B. licheniformis K11 could produce the antibiotic of iturin which was able to inhibit Phytophthora capsici. We confirmed complementary noncompetitive mutualism between B. subtilis AH18 and B. licheniformis K11 of the consortium No.11. The results came out through treatment of two strains co-culture, treatment of individual culture and co-treatment of two individual cultures for the growth and Phytophthora blight suppression of red-pepper. The treatment of two strains co-culture didn't show a synergic effect in comparing sole treatment on the pepper growth promotion and Phytophthora blight suppression. But, when the pots were treated simultaneously with co-treatment of two individual cultures, an synergic effect was seen in the growth promotion of roots, stem, leaves and suppressed Phytophthora blight on red-pepper in vivo pot test.

Etiology of a Half Stem Rot in Sesame Caused by Fusarium oxysporum (Fusarium oxysporum에 의(依)한 참깨줄기반쪽썩음 병상(病狀)의 병원학적(病原學的) 연구(硏究))

  • Cho, Eui-Kyoo;Choi, Seong-Ho
    • Korean journal of applied entomology
    • /
    • v.26 no.1 s.70
    • /
    • pp.25-30
    • /
    • 1987
  • An unusual disease syndrome, partial stem rot and final blight of the whole plants was observed in sesame, Sesamum indicum L., cultivar Pungnyeonkkae and Kwangsankkae grown in the field. Symptoms progressed from water-soaking continuous banding lesions on one side of stem to producing abundant Fusarium growth on the lesion at late stage of pathogenesis. Although wilting of plants was most frequently observed in sesame seedlings when infected with Fusarium oxysporum, reproduction of the partial stem discoloration and rot was possible by soil inoculation, and wound inoculation in old plants. The disease occurred from late July. Mycological characteristics of the isolate Fusarium oxysporum compared with those reported in sesame suggested that the isolate might be F. oxysporum f. sp. sesame.

  • PDF

Stem Rot of Capsicum annuum Caused by Sclerotium relfsii in Korea (Sclerotium rolfsii에 의한 고추 흰비단병 발생)

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.21-24
    • /
    • 2004
  • A destructive stem rot of pepper (Capsicum annuum) was found from the often field sporadically in Jingyemyon, Hadong-gun in July 2002 and vinyl houses in Moonsan-eup, Jinju City in October 2003. The same fungus also caused collar and crown rot and systemic wilt or blight of whole plant. White mycelium spread over stems of infected plants and sclerotia formed on the old lesions and near the soil surface. The fungus showed maximum mycelial growth around 3$0^{\circ}C$. The mycelial color is white and width of hyphae ranges 3.6∼10.2 ${\mu}{\textrm}{m}$, and formed clamp connection. Numerous sclerotia were farmed in artificial media such as PDA at 3$0^{\circ}C$. The shape of sclerotia were sphere and 1.0∼2.1 mm in diameter, The fungus was isolated repeatedly from the infected tissues and the pathogenecity of fungus to pepper (Capsicum annuum) was confirmed, and identified as Sclerotium rolfsii. This is the first report on the stem rot of pepper (Capsicum annuum) caused by Sclerotium rolfsii in Korea.

Isolation of Polyene Antifungal Antibiotics Against Gummy Stem Light Caused by Didymella bryoniae (Streptomyces sp. 유래 Polyene 계 항만고병 항생물질의 분리)

  • 김광석;서영배
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.238-242
    • /
    • 2004
  • Antifungal agents, flavofungin and fungichromin were isolated from the fermentation culture broth of a Streptomyces sp. SKM338. Biological evaluation of these antibiotics indicated that the compounds possesses broad spectrum antifungal activity against various pathogens. Especially, these compounds inhibited throughly growth of Didymella bryoniae, caused Gummy stem blight of melons, occurs in the southeastern Korea. Inhibition of this pathogen may be prevented from directly reducing both pre- and post-harvest yields.

Efficacy of Suppression of Phytophthora Blight of Red Pepper Caused by Phytophthora capsici by Treatment with Antagonistic Trichoderma harzianum DYMC in Greenhouse (온실에서 길항미생물 Trichoderma hazianum DYMC 처리에 의한 고추 역병 억제 효과)

  • Lee, Yong-Se;Chang, Tae-Hyun;Ryu, Yeon-Ju;Park, Jeong-Yong;Lim, Tae-Heon
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.409-415
    • /
    • 2005
  • To control Phytophthora blight of red pepper biologically caused by Phytophthora capsici, we developed Trichoderma harzianum DYMC for commercial product. DYMC was storage at room temperature and was investigated their population every 3 months for 1 year. For investigating the dynamic population of T. harzianum in the pot soils, we applied powder and suspension applications with DYMC, and then investigated for 95 days. The efficacy of powder and suspension applications of DYMC for control of Phytophthora blight of red pepper and plant growth were investigated for 50 days in greenhouse experiment. The population of T. harzianum was decreased at the room temperature for 1 year but there was not statistically significance. After soil treated in the pot with DYMC, the population of Trichoderma spp. was the highest when DYMC powder at 5 g was applied to mix with pot soil, and the population was deceased significantly among treatment means as time goes by ($R^2=0.76$, F=10.5960, P=<.0001). Incidence of Phytophthora blight of, red pepper was significantly reduced among treatment means on 50th day after treated with DYMC ($R^2=0.82$, P=16.4758, P=<.0001). Disease control value was the highest at 62.5% when DYMC powder at 5 g was applied to mix with pot soil. No significant difference (P=0.05) of effects of plant and root growth showed by treated with DYMC on 60th day, except stem. Mixing the application of DYMC powder with soil to control Phytophthora blight of red pepper was greater than suspension application to dilute with water. DYMC could be used as an effective biocontrol agent to control Phythophthora blight of red pepper.

Collar Rot of Safflower Caused by Sclerotium rolfsii (Sclerotium rolfsii에의한 잇꽃 흰비단병)

  • 권진혁
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.119-121
    • /
    • 1999
  • A destructive collar rot of safflower occurred severely research farm of at Kyongsangnam-do Agricultural Research and Extension Services in 1999. Incidence of the disease at 3 fields in Chinju was ranged from 21.6 to 34.2% Upper parts of infected stems were mostly blighted and white mycelia were found on the lesions. The same fungus was isolated consistently from the infected tissues and confirmed its pathogenecity to safflower. The causal fungus of collar rot disease was identified as Sclerotium rolfsii by the examination of colony type sclerotium formation and pathogenicity test. This fungus also causes stem rot crown rot wilt or blight on the safflower. This is the first report on the collar rot of safflower caused by Sclerotium rolfsii in Korea.

  • PDF

Effect of Field Sanitation on the Pod and Stem Blight Caused by Phomopsis spp. in Soybean (포장위생 관리가 콩 미이라병의 발생에 미치는 영향)

  • 오정행
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.526-530
    • /
    • 1998
  • The effect of field sanitation using ecological characters of the pathogen was investigated for controlling Phomopsis seed decay in soybean. Field sanitation which was eliminated the inoculum by removing host debris, abscised petioles and cotyledones out of field, reduced remarkably infection percentage of pods and seeds by Phomopsis spp. as compared to the inoculated field. Neverthless, seed infection was 28.7% in the sanitized field. The fields sanitized by benlate application around the soybean plants also decreased seed infection with Phomopsis spp. Total seed infection including that with miscellaneous pathogens occurred as much as 75∼79% to the no application and their control values were 34∼42% over the routine application schedule. Even though it was not satisfactory, field sanitation seemed to be effective in controlling Phomopsis seed decay when infection pressure was low level. Diaporthe phseolorum va. sojae, D. phaseolorum var. caulivora and Phomopsis longicolla were mostly identified from soybean seeds and Colletotrichum truncatum, Cercospora kikuchiana were also isolated in sequence. Field sanitation did not significantly increase in soybean yield over the no application, while routine application schedule did in field.

  • PDF

Pathogenic Isolates of Alternaria longissima Deighton & Macgarvie from Sesame Seed (참깨종자에서 검출된 Alternaria longissima와 그의 병원성)

  • Yu, Seung Hun;Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.77-80
    • /
    • 1980
  • Alternaria longissima Deighton & Macgarvie was recorded for the first time on seeds of sesame in low percentages. Detailed descriptions of the habit characters, conidial morphology and cultural characters are described. This fungus, which is generally regarded as a saprophyte, was shown to be a pathogen to sesame plants producing zonate leaf spots, foliage blight, stem necrosis and spots on capsules, but does not show any pathogenicity to rice and sorghum plants.

  • PDF

First Report of Waitea Ring Patch caused by Waitea circinata on Zoysiagrass (Zoysiagrass에 Waitea circinata에 의한 Waitea Ring Patch 발생)

  • Kim, Kyung-Duck;Hong, Sung-Chul;Jang, Kong-Man;Han, Muho;Pyee, Jae-Ho;Park, Dae-Sup
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.378-381
    • /
    • 2014
  • A new pathogen was isolated from zoysiagrass-planted park of Jeju island in 2014. Symptoms appeared a type of irregular patches occurring brownish leaf blight, followed by stem and crown rot. The symptom was very similar to that of large patch caused by Rhizoctonia solani, a well-known devastating zoysiagrass disease. The isolate showed thin orange-colored mycelia and screlotia were formed on the medium based on cultural characteristics. The causal agent of the disease was finally identified as Waitea circinata by analysis of ribosomal DNA. On the inoculation test, Waitea circinatae showed strong pathogenicity to the zoysiagrass. The mycelia were obviously observed in the inoculated tissues. This is the first report of Waitea ring patch caused by Waitea circinata on zoysiagrass.