• Title/Summary/Keyword: steering gear box

Search Result 11, Processing Time 0.025 seconds

Development of the Steering Gear Box for Electric Vehicles based on the Reverse Engineering (역설계 기반의 전기자동차 스티어링 기어박스 개발)

  • Moon, Sung-Sik;Yoo, Young-Min;Yoo, Woo-Sik
    • IE interfaces
    • /
    • v.25 no.1
    • /
    • pp.134-141
    • /
    • 2012
  • The steering gear box for mid-heavy duty electric vehicles are usually produced by only a few specialized companies. The special techniques, such as designing, producing and testing technology have been veiled. For this reason, steering gear boxes are imported from other country. The durability test with the electric vehicle which is satisfies the design parameters takes several years, and a prototype is installed in the real vehicle for the test. In this research, the steering gear box of the steering system was developed based on the reverse engineering and the testing methods and the steering gear box development process have been suggested. The prototype is also developed with the CAD and CAE tools. Developed steering gear box have been tested in torque tester and have satisfied requied torque. As a result, the process and testing methods studied in this research are useful in the development processes of electric vehicles steering system.

Improvement of on Center Steer Feel by Using Power Steering Gear Box Characteristics (파워스티어링 기어박스 특성을 이용한 중립 조향감의 향상)

  • 이병림;이재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.202-208
    • /
    • 2002
  • Ball k nut type steering gear box has disadvantages on on-center range as compared with rack & pinion type because of many linkages. In this study, a technique which can improve the on-center loose feel is introduced. The improvement can be obtained by putting simple devices on steering gear box valve body which can change the stiffness of steering gear on on-center handling range. Analysis and test of the vehicle with improved steering system are performed.

A Study on the Performance Characteristics and Reuse Effect for Recycled Parts of CV Joint and Steering Gear Box in the Vehicles (자동차 중고재생 등속조인트와 스티어링 기어박스의 성능과 활용효과에 대한 연구)

  • 조휘창;박인송
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.199-205
    • /
    • 2002
  • The scale of repair parts market reached 0.1 billion won. Above all, it is remarkable that the automotive insurance business world is paying f3r 40 ~5o% of the whole repair cost. The repair parts consist of a genuine parts, non-genuine parts, recycling used parts. It is the recent trend that recycled parts are more popular than the genuine parts f3r repairing crashed cars due to the cost. Performance of recycled continuous velocity(CV) joints and power steering(PS) gear box as replacement parts was tested and analysed in this study. To examine the durability of the recycled parts, the replaced CV joints and PS gear box after repair were tested and analysed periodically. The results were showed that basic performance of the recycled parts was normal. However the ball cage of CV joints was more frequently damaged than genuine parts. We concluded that a test standard and amendment of related laws for recycled parts is required to get a safe and durable parts.

Study on the Direct Steering System using Rack and Pinion for Ultra-Small Vehicles (랙 & 피니언 기어를 이용한 소형 자동차의 직접 조향 방식에 관한 연구)

  • Kim, Soon-Ho;Kang, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.127-134
    • /
    • 2002
  • This study present a direct steering system using rack and pinion for ultra-small vehicles. The traditional small vehicles for special use had the limitation of space by reason of short wheel tread. These vehicles has adopted a indirect steering system or a center arm system for steering. The disadvantages of these system were deterioration of gear efficiency and increase of parts. For direct-linkage to both knuckles, steering system is made up of out-side tie rods, tie-rod ends, and gear box. Thus, the proposed system has a minimum number of parts. The experimental results show a maximum efficiency at minimum steering angle and a minimum clearance circle. These effects were accomplished by adopting a Ackerman-Jantaud theory.

Case Study of Tribological Failure Characteristics in Automotive Steering System (자동차 조향장치의 트라이볼로지적 고장특성에 관한 사례연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon;Cho, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.61-67
    • /
    • 2010
  • The purpose of this paper is to study and analyze the failure examples on tribological characteristics of an automotive steering system. In this failure study, the grease leakage may stick leaked grease, dust, and wear particles between pinion and rack gears in mechanical steering system. In the case of seal failures such as a rod seal, o-ring and oil seals, the gear box and oil pump do not operate properly due to lack of oils. This means that oil pump does not supply a working fluid and produce a normal oil pressure of the steering system. This leads to leak a working fluid from the seals and produce a wear between pinion and rack gears. Especially, the leaked oil is usually mixed with internal wear particles and foreign dust/fine sands. Thus no leakage of working oils is very important design concepts, which is strongly related to the sealing components and smoothly operating of the mechanical friction parts of power steering system.

Characteristic Investigation of Design Parameters on the Hydraulic Power Steering Gear Box (유압식 동력 조향기어 박스에서 설계변수의 특성검토)

  • Jang, Joo-Sup;Yoon, Young-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.135-142
    • /
    • 2008
  • Hydraulic power steering system has been adopted in seniority passenger and commercial vehicle system for an easy maneuverability and a smoother ride. In this study, hydraulic power steering system analysis model which includes hydraulics and mechanical sub-systems was developed using commercial software, AMESim in order to predict characteristics for various steering components. Each component which constructs system was modeled and verified by experimentally obtained characteristics curves of each components. The parameter sensitivity analysis such as valve opening area, torsional stiffness of torsion bar for system design are carried out by the analysis and experimental method. The predicted results by the development model were a good agreement with experimentally obtained results. The sensitivity investigation results rotary torque when changing an input shaft edge width, was most sensitive, to change in angle and slot width and supply flow of input shaft edge is not a lot sensitively.

Heat-Pressure Characterization of Power Steering Hose by Finite Element Analysis (자동차 파워스티어링 호스의 열내압 특성 유한요소해석)

  • Roh, Gi-Tae;Joen, Do-Hyung;Choi, Ju-Hyung;Cho, Jin-Rae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.409-414
    • /
    • 2003
  • Power steering hose is device that operation oil passes between steering gear box and oil pump by parts that is used to do steering system. Because this hose is receiving heat and pressure of high temperature, leakage can produce swaging from hitch of steel materials of done part. In this paper, we analyze swaging process of Power steering hose by finite element analysis, and achieved thermal and pressure analysis with this shape. We can analogize weakness part of hose through this result, and examine closely oil leakage and rubber failure mechanism and look for important design benevolence of power steering hose development.

  • PDF

Analysis Model Development for Designing of Hydraulic Power Steering System (유압식 동력조향 장치 설계를 위한 해석 모델 개발)

  • Jang, Joo-Sup;Yoon, Young-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.158-165
    • /
    • 2008
  • Hydraulic power steering system has been adopted in seniority passenger and commercial vehicle system for an easy maneuverability and a smoother ride. In this study, hydraulic power steering system analysis model which includes hydraulics and mechanical sub-systems was developed using commercial software, AMESim in order to predict characteristics for various steering components. Each component which constructs system was modeled and verified by experimentally obtained characteristics curves of each components. The agreement between simulation and experimental results shows the validity of the simulation model. The parameter sensitivity analysis such as valve opening area, torsional stiffness for system design are carried out by the analysis and experimental method.

Development of HILS System for Performance Evaluation of a Heavy Commercial Vehicle Hybrid Electric Power Steering System (대형 상용차량 하이브리드 전동식 조향 시스템 주행 성능평가를 위한 HILS 시스템 개발)

  • Yoo, Chunsik;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.103-110
    • /
    • 2017
  • Most commercial vehicles have adopted the hydraulic power steering system. To reduce fuel consumption and to improve steering controllability, a hybrid electric power steering system is being developed for commercial vehicles. In this study, the HILS (Hardware In the Loop Simulation) system equipped with a commercial vehicle hybrid electric power steering system was developed and the vehicle dynamic performance of a truck with the steering system was evaluated. The hybrid electric power steering system is composed of the EHPS motor pump, column mounted EPS system, and ball nut steering gear box for heavy commercial vehicles. The accuracy of vehicle models equipped with the HILS system was verified with comparisons between the simulation results and field test results. The road reaction forces of the steering system were generated from the vehicle model and verified using field test results. Step steering tests using the verified HILS system were carried out and the performance of a newly developed commercial vehicle hybrid electric power steering system was evaluated.

Development of a Driving Operation System for Vehicle Simulator (차량 시물레이터의 운전석 시스템 개발)

  • 유성의;박민규;유기성;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.291-291
    • /
    • 2000
  • A vehicle driving simulator is a virtual reality device which a human being feels as if the one drives a vehicle actually. Driving Operation System acts as an interface between a driver and a driving simulator. This paper suggests the driving operation system for a driving simulator. This system consists of a controller, DC geared motor, MR brake, rotary encoders, steeping motor and bevel gear box. Reaction force and torque on the steering system were made by DC_Motor and MR_Brake. Reaction force and torque on the steering system were compare between real car and a driving simulator. The controller based on the 80C196KC micro processor that manage and transfer signal.

  • PDF