• Title/Summary/Keyword: steel-reinforced concrete (RC)

Search Result 828, Processing Time 0.022 seconds

Study on Reinforcement Effect of Circular RC Columns by Helical Bar Under Cyclic Lateral Load (반복 횡하중을 받는 원형 철근콘크리트 기둥의 Helical Bar 보강효과에 대한 연구)

  • Kim, Seong-Kyum;Park, Jong-Kwon;Han, Sang-Hee;Kim, Byung-Cheol;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • In this study, quasi-static according to the displacement-controlled (strain control) method tests on RC columns for seismic reinforcement performance in accordance with the provisions of the seismic design and construction before 1992 design code for highway bridges in korea. Used reinforcement that improves the performance of Inorganic Helical Bar, a kind of alloy steel, circular columns were tested outside the seismic reinforcing. In the experiment, fracture behavior, lateral load-displacement relation, ductility and energy assessment evaluation was performed through tests. The variables in experimental are section force of reinforcement, spiral reinforcement spacing, reinforcement method. Improved seismic performance and effect were confirmed through quasi-static test experiments. The results of study confirmed determination the appropriate size of reinforcement, reinforcement forces, spacing and selection of the type required, furthermore, not only mechanical reinforcement but also substitution of high-strength concrete reinforced with concrete cover improved seismic performance.

Development of Testing and Analysis Model for Evaluation of Absorbed Water Diffusion into Concrete (콘크리트 흡수 수분확산계수 산정을 위한 실험 및 수치해석 모델 개발)

  • Park, Dong-Cheon;Ahn, Jae-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.371-378
    • /
    • 2011
  • Concrete is affected by various deterioration factors, such as $CO_2$ and chloride ions from the sea, which cause carbonation and salt attack on concrete. These deterioration phenomena cause steel corrosion in RC structures. Although a great deal of research has been carried out in this area thus far, it is difficult to know the point at which corrosion will occur to a reinforced bar. As the diffusion of deterioration factors depends on the water content in concrete, it is imperative to assess the condition of absorbed water content. A mass measuring method was applied to calculate the absorbed water diffusion coefficient, as well as non-linear finite element method(FEM) analysis. As a result, it was found that W/C and unit water content in concrete mixture affect the diffusion coefficient decision.

Reinforcement Effect of Reinforced Concrete Beams Strengthened with Grid-type Carbon Fiber Plastics (격자형 탄소섬유로 보강한 R/C보의 보강효과)

  • Jo, Byung-Wan;Tae, Ghi-Ho;Kwon, Oh-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.377-385
    • /
    • 2003
  • Flexural characteristics of the R.C beams strengthened with newly-developed grid-type carbon fiber plastics(CFRP-GRIDS) were investigated. The tests were conducted under the four-points load to the failure to investigate the strengthening effects of CFRP-GRIDS on the beams. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly, the appropriate area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

Experimental Study on Flexural Capacity of Precast Steel Mesh Reinforced Mortar Panel (프리캐스트 스틸메쉬 보강 모르타르 패널의 휨 성능에 대한 실험적 연구)

  • Yi, Na Hyun;Kim, Jang Ho Jay;Lee, Sang Won;Kim, Tae Gyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.10-19
    • /
    • 2013
  • Recently, researches related to precast modular construction have been actively conducted for nuclear power plant, LNG gas tank, and small-medium PCCV as well as bridges and buildings. In this study, the precast panel cast with steel mesh reinforced mortar (SRM) which is similar reinforced ferrocement was developed for efficient precast construction, construction time reduction, and easy transportation. Mortar mixture with high strength and flowability was obtained from various case studies using silica fume and GGBS. Also, $1,200{\times}600{\times}150mm$ SRM and reinforced concrete (RC) panels were manufactured with reinforcing ratio of 2% and 4%. To verify structural performance of the SRM specimen, the basic material tests, free shrinkage test, and 3-point flexural test with a line loading were carried out. From the test results, it was determined that SRM specimens showed outstanding flexural capacity and ductility. However, the 4% reinforced SRM specimens must consider shear reinforcing to be used as a precast modular member.

Estimation of response reduction factor of RC frame staging in elevated water tanks using nonlinear static procedure

  • Lakhade, Suraj O.;Kumar, Ratnesh;Jaiswal, Omprakash R.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.209-224
    • /
    • 2017
  • Elevated water tanks are considered as important structures due to its post-earthquake requirements. Elevated water tank on reinforced concrete frame staging is widely used in India. Different response reduction factors depending on ductility of frame members are used in seismic design of frame staging. The study on appropriateness of response reduction factor for reinforced concrete tank staging is sparse in literature. In the present paper a systematic study on estimation of key components of response reduction factors is presented. By considering the various combinations of tank capacity, height of staging, seismic design level and design response reduction factors, forty-eight analytical models are developed and designed using relevant Indian codes. The minimum specified design cross section of column as per Indian code is found to be sufficient to accommodate the design steel. The strength factor and ductility factor are estimated using results of nonlinear static pushover analysis. It was observed that for seismic design category 'high' the strength factor has lesser contribution than ductility factor, whereas, opposite trend is observed for seismic design category 'low'. Further, the effects of staging height and tank capacity on strength and ductility factors for two different seismic design categories are studied. For both seismic design categories, the response reduction factors obtained from the nonlinear static analysis is higher than the code specified response reduction factors. The minimum dimension restriction of column is observed as key parameter in achieving the desired performance of the elevated water tank on frame staging.

Transverse Reinforcement for Circular Internally Confined Hollow RC column (원형 내부 구속 중공 RC 기둥의 심부 구속 횡방향 철근 연구)

  • Won, Deok Hee;Han, Taek Hee;Park, Woo Sun;Park, Jong Sub;Kang, Young Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.927-935
    • /
    • 2013
  • Recently, bridge structures has progressed the researches about seismic performance by occurrence of earthquake increased compared with the past. In the substructure of bridge, confining transverse reinforcement has arranged in plastic hinge region to resist the lateral load which increased the lateral confining effect. Columns are increased the seismic performance through secure of the stiffness and ductility The design specification for arrangement of confining transverse reinforcement same specification of domestic and international that suggested to solid reinforced concrete column(RC). This design specification have limits for Internally Confined Hollow RC(ICH RC) column because of different the component and performance characteristics of column. In this paper suggested the modified equation for economics and rational design through investigation of displacement ductility when applied the existing specification at the steel composite hollow RC column.

Safety of Ductility Demand Based Seismic Design for Circular RC Bridge Columns (원형 철근콘크리트 교각에 대한 연성도 내진설계법의 안전성)

  • Lee, Jae-Hoon;Hwang, Jung-Kil;Choi, Jin-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.193-202
    • /
    • 2008
  • Seismic design for bridge columns of the current Korea Highway Bridge Design Specifications which adopt full ductility design concept results in reinforcement congestion problems in construction site. It is due to large amount of confining steel is required even for small ductility demand which is a normal case in low and moderate seismicity regions like Korean peninsular. Therefore a new seismic design method based on limited ductility concept was proposed, which is called ductility demand based design method. It uses the new confining steel design equation considering ductility demand and aspect ratio of the column as well as material strength. The purpose of this study is to verify safety of the ductility demand based design method by the confining steel design equation. Eighty nine circular column test results are selected and investigated in terms of ductility factor and its safety. The safety factor for the circular column test results ranges between 1.11 and 3.98, and the average is 1.90. In this paper, the basic concept and detailed design procedure of the ductility demand based design method are also introduced as well as the investigation of the safety with respect to the major variables in confining steel design.

Structural Performance of RC Slab-Wall Joints Reinforced by Welded Deformed Steel Bar Mats (철근격자망을 사용한 슬래브-벽체 접합부의 구조성능)

  • Park, Seong-Sik;Yoon, Young-Ho;Lee, Bum-Sik
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.61-68
    • /
    • 2011
  • In order to clarify the structural performances of Welded Deformed Steel Bar Mats (WDSBM), the research stated includes the tests for standard hook of top bars of slab in concrete slab-wall joints, the tests for embedment length of top bar of slab, and the development strength tests for standard hook. The test results are as follows; (1) For slab-wall joints using WDSBM as reinforcement in slab, if the top bars of WDSBM are spliced by ordinary bars with sufficient development length and size, it is enough for the strength and crack control. (2) When WDSBM of slab is spliced in joint, the strength is increased with the embedment of bars of this WDSBM into wall. Beyond peak strength, however, ductility is diminished to that as no splice due to pull-out failure. (3) For slab-wall system, ultimate strain of concrete for flexural compression zone in lower surface of slab seems much greater than that of normal concrete beam. The reason is that normal concrete beam has the joint with $180^{\circ}$, however slab-wall joint has the $90^{\circ}$ of which concrete can be confined.

An Experimental Study on Seismic Performance Evaluation of Retrofitted Column of FRP Seismic Reinforcement that can be Emergency Construction (긴급시공이 가능한 FRP 내진보강재로 보강된 기둥의 내진성능평가 실험)

  • Kim, Jin-Sup;Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Dong-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.21-30
    • /
    • 2013
  • As increasing number of large-size earthquake, the social interest of seismic retrofitting of RC structure is growing. Especially, the RC columns that are not reflected seismic design can not resist lateral loads by the earthquake. The brittle fracture of Non-seismic designed columns lead to full collapse of the building. Thus, the emergency columns reinforcement method is needed. That have a fast construction time, do not cause damage to the column. In the past, cross-sectional expansion method, a steel plate reinforcing method is applied mainly, but in recent years, carbon fiber sheet taking advantage of FRP (Fiber Reinforced Polymer) is widely used. In this study, retrofitting effect of seismic performance of FRP seismic reinforcement, which is possible to emergency construction, was examined. Reinforced concrete specimens were constructed to experimental study. The seismic performence of specimes retrifitted with FRP seismic reinforcement were evaluated. As a result, the seismic performance of specimen reinforced with FRP seismic reinforcement has been improved.

Behavior of 550MPa 43mm Hooked Bars Embedded in Beam-Column Joints (보-기둥 접합부에 정착된 550 MPa 43 mm 갈고리철근의 거동)

  • Bae, Min-Seo;Chun, Sung-chul;Kim, Mun-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.611-620
    • /
    • 2016
  • In the construction of nuclear power plants, only 420 MPa reinforcing bars are allowed and, therefore, so many large-diameter bars are placed, which results in steel congestion. Consequently, re-bar works are difficult and the quality of RC structures may be deteriorated. To solve the steel congestion, 550 MPa bars are necessary. Among many items for verifying structural performance of reinforced concrete with 550 MPa bars, the 43 mm hooked bars are examined in this study. All specimens failed by side-face blowout and the side cover explosively spalled at maximum loads. The bar force was initially transferred to the concrete primarily by bond along a straight portion. At the one third of maximum load, the bond reached a peak capacity and began to decline, while the hook bearing component rose rapidly. At failure, most load was resisted by the hook bearing. For confined specimens with hoops, the average value of test-to-prediction ratios by KCI code is 1.45. The modification factor of confining reinforcement which was not allowed for larger than 35 mm bars can be applied to 43 mm hooked bars. For specimens with 70 MPa concrete, the average value of test-to-prediction ratios by KCI code is 1.0 which is less than the values of the other specimens. The effects of concrete compressive strength should be reduced. An equation to predict anchorage capacity of hooked bars was developed from regression analysis including the effects of compressive strength of concrete, embedment length, side cover thickness, and transverse reinforcement index.