• Title/Summary/Keyword: steel-reinforced concrete (RC)

Search Result 828, Processing Time 0.027 seconds

Performance of headed FRP bar reinforced concrete Beam-Column Joint

  • Md. Muslim Ansari;Ajay Chourasia
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.71-81
    • /
    • 2024
  • Fiber Reinforced Polymer (FRP) bars have now been widely adopted as an alternative to traditional steel reinforcements in infrastructure and civil industries worldwide due variety of merits. This paper presents a numerical methodology to investigate FRP bar-reinforced beam-column joint behavior under quasi-static loading. The proposed numerical model is validated with test results considering load-deflection behavior, damage pattern at beam-column joint, and strain variation in reinforcements, wherein the results are in agreement. The numerical model is subsequently employed for parametric investigation to enhance the end-span beam-column joint performance using different joint reinforcement systems. To reduce the manufacturing issue of bend in the FRP bar, the headed FRP bar is employed in a beam-column joint, and performance was investigated at different column axial loads. Headed bar-reinforced beam-column joints show better performance as compared to beam-column joints having an L-bar in terms of concrete damage, load-carrying capacity, and joint shear strength. The applicability and efficiency of FRP bars at different story heights have also been investigated with varying column axial loads.

Evaluation of steel fiber reinforcement effect in segment lining by full scale bending test (실물파괴실험에 의한 세그먼트 라이닝의 강섬유 보강 효과 평가)

  • Lee, Gyu-Phil;Bae, Gyu-Jin;Moon, Do-Young;Kang, Tae-Sung;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.215-223
    • /
    • 2013
  • An experimental research on the possibility of using fiber reinforced concrete precast tunnel segments instead of traditional reinforced concrete(RC) segment has been performed in europe. This solution allows removing the traditional reinforcement with several advantages in terms of quality and cost reduction. Full-scale bending tests were carried out in order to compare the behaviour of the segments under flexural actions on both rebar reinforced concrete and rebar-fiber reinforced elements. The test results showed that the fiber reinforced concrete can substitute the traditional reinforcement; in particular the segment performance is improved by the fiber presence, mainly in terms of crack.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

Repair of seismically damaged RC bridge bent with ductile steel bracing

  • Bazaez, Ramiro;Dusicka, Peter
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.745-757
    • /
    • 2018
  • The inclusion of a ductile steel bracing as means of repairing an earthquake-damaged bridge bent is evaluated and experimentally assessed for the purposes of restoring the damaged bent's strength and stiffness and further improving the energy dissipation capacity. The study is focused on substandard reinforced concrete multi-column bridge bents constructed in the 1950 to mid-1970 in the United States. These types of bents have numerous deficiencies making them susceptible to seismic damage. Large-scale experiments were used on a two-column reinforced concrete bent to impose considerable damage of the bent through increasing amplitude cyclic deformations. The damaged bent was then repaired by installing a ductile fuse steel brace in the form of a buckling-restrained brace in a diagonal configuration between the columns and using post-tensioned rods to strengthen the cap beam. The brace was secured to the bent using steel gusset plate brackets and post-installed adhesive anchors. The repaired bent was then subjected to increasing amplitude cyclic deformations to reassess the bent performance. A subassemblage test of a nominally identical steel brace was also conducted in an effort to quantify and isolate the ductile fuse behavior. The experimental data from these large-scale experiments were analyzed in terms of the hysteretic response, observed damage, internal member loads, as well as the overall stiffness and energy dissipation characteristics. The results of this study demonstrated the effectiveness of utilizing ductile steel bracing for restoring the bent and preventing further damage to the columns and cap beams while also improving the stiffness and energy dissipation characteristics.

Displacement Ductility of Circular RC Column According to the Spacing of Spirals (나선철근 간격에 따른 원형 RC 기둥의 변위연성도)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.71-82
    • /
    • 2013
  • Eight small scale circular reinforced concrete columns (4.5 aspect ratio) were tested under cyclic lateral load with constant axial load. The selected test variables are longitudinal steel ratio (2.017%, 3.161%), transverse steel ratio, and axial load ratio (0, 0.07, 0.15). Volumetric ratio of spirals of all the columns is 0.335~0.894% in the plastic hinge region. It corresponds to 39.7~122.3% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The final objectives of this study are to provide quantitative reference data and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, steel fracture, etc. In this paper, describes mainly failure behavior, strength degradation behaviour, displacement ductility of circular reinforced concrete bridge columns with respect to test variables.

Compressive resistance behavior of UHPFRC encased steel composite stub column

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Zhang, Jiasheng
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.211-227
    • /
    • 2020
  • To explore the feasibility of eliminating the longitudinal rebars and stirrups by using ultra-high-performance fiber reinforcement concrete (UHPFRC) in concrete encased steel composite stub column, compressive behavior of UHPFRC encased steel stub column has been experimentally investigated. Effect of concrete types (normal strength concrete, high strength concrete and UHPFRC), fiber fractions, and transverse reinforcement ratio on failure mode, ductility behavior and axial compressive resistance of composite columns have been quantified through axial compression tests. The experimental results show that concrete encased composite columns with NSC and HSC exhibit concrete crushing and spalling failure, respectively, while composite columns using UHPFRC exhibit concrete spitting and no concrete spalling is observed after failure. The incorporation of steel fiber as micro reinforcement significantly improves the concrete toughness, restrains the crack propagation and thus avoids the concrete spalling. No evidence of local buckling of rebars or yielding of stirrups has been detected in composite columns using UHPFRC. Steel fibers improve the bond strength between the concrete and, rebars and core shaped steel which contribute to the improvement of confining pressure on concrete. Three prediction models in Eurocode 4, AISC 360 and JGJ 138 and a proposed toughness index (T.I.) are employed to evaluate the compressive resistance and post peak ductility of the composite columns. It is found that all these three models predict close the compressive resistance of UHPFRC encased composite columns with/without the transverse reinforcement. UHPFRC encased composite columns can achieve a comparable level of ductility with the reinforced concrete (RC) columns using normal strength concrete. In terms of compressive resistance behavior, the feasibility of UHPFRC encased steel composite stub columns with lesser longitudinal reinforcement and stirrups has been verified in this study.

A practical model for simulating nonlinear behaviour of FRP strengthened RC beam-column joints

  • Shayanfar, Javad;Bengar, Habib Akbarzadeh
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.49-74
    • /
    • 2018
  • Generally, beam-column joints are taken into account as rigid in assessment of seismic performance of reinforced concrete (RC) structures. Experimental and numerical studies have proved that ignoring nonlinearities in the joint core might crucially affect seismic performance of RC structures. On the other hand, to improve seismic behaviour of such structures, several strengthening techniques of beam-column joints have been studied and adopted in practical applications. Among these strengthening techniques, the application of FRP materials has extensively increased, especially in case of exterior RC beam-column joints. In current paper, to simulate the inelastic response in the core of RC beam-column joints strengthened by FRP sheets, a practical joint model has been proposed so that the effect of FRP sheets on characteristics of an RC joint were considered in principal tensile stress-joint rotation relations. To determine these relations, a combination of experimental results and a mechanically-based model has been developed. To verify the proposed model, it was applied to experimental specimens available in the literature. Results revealed that the model could predict inelastic response of as-built and FRP strengthened joints with reasonable precision. The simple analytic procedure and the use of experimentally computed parameters would make the model sufficiently suitable for practical applications.

Seismic behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 1: Experimental study

  • Zhu, Y.;Su, R.K.L.;Zhou, F.L.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.149-172
    • /
    • 2007
  • An experimental study of five full-scale coupling beam specimens has been conducted to investigate the seismic behavior of strengthened RC coupling beams by bolted side steel plates using a reversed cyclic loading procedure. The strengthened coupling beams are fabricated with different plate thicknesses and shear connector arrangements to study their respective effects on load-carrying capacity, strength retention, stiffness degradation, deformation capacity, and energy dissipation ability. The study revealed that putting shear connectors along the span of coupling beams produces no significant improvement to the structural performance of the strengthened beams. Translational and rotational partial interactions of the shear connectors that would weaken the load-carrying capacity of the steel plates were observed and measured. The hierarchy of failure of concrete, steel plates, and shear connectors was identified. Furthermore, detailed effects of plate buckling and various arrangements of shear connectors on the post-peak behavior of the strengthened beams are discussed.

Seismic response of NFRP reinforced RC frame with shape memory alloy components

  • Varkani, Mohamad Motalebi;Bidgoli, Mahmood Rabani;Mazaheri, Hamid
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.285-295
    • /
    • 2022
  • Creation of plastic deformation under seismic loads, is one of the most serious subjects in RC structures with steel bars which reduces the life threatening risks and increases dissipation of energy. Shape memory alloy (SMA) is one of the best choice for the relocating plastic hinges. In a challenge to study the seismic response of concrete moment resisting frame (MRF), this article investigates numerically a new type of concrete frames with nano fiber reinforced polymer (NFRP) and shape memory alloy (SMA) hinges, simultaneously. The NFRP layer is containing carbon nanofibers with agglomeration based on Mori-Tanaka model. The tangential shear deformation (TASDT) is applied for modelling of the structure and the continuity boundary conditions are used for coupling of the motion equations. In SMA connections between beam and columns, since there is phase transformation, hence, the motion equations of the structure are coupled with kinetic equations of phase transformation. The Hernandez-Lagoudas theory is applied for demonstrating of pseudoelastic characteristics of SMA. The corresponding motion equations are solved by differential cubature (DC) and Newmark methods in order to obtain the peak ground acceleration (PGA) and residual drift ratio for MRF-2%. The main impact of this paper is to present the influences of the volume percent and agglomeration of nanofibers, thickness and length of the concrete frame, SMA material and NFRP layer on the PGA and drift ratio. The numerical results revealed that the with increasing the volume percent of nanofibers, the PGA is enhanced and the residual drift ratio is reduced. It is also worth to mention that PGA of concrete frame with NFRP layer containing 2% nanofibers is approximately equal to the concrete frame with steel bars.

Evaluation of Plastic Rotational Capacity Based on Material Characteristics in Reinforced Concrete Flexural Members (재료 특성에 기반한 철근콘크리트 휨부재의 소성회전능력 산정)

  • Choi, Seung-Won;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.825-832
    • /
    • 2010
  • Although a critical section reaches its flexural strength in reinforced concrete structures, the structure does not always fail because moment redistribution occurs during the formation of plastic hinges. Inelastic deformation in a plastic hinge region results in plastic rotation. A plastic hinge mainly depends on material characteristics. In this study, a plastic hinge length and plastic rotation are evaluated using the flexural curvature distribution which is derived from the material models given in Eurocode 2. The influence on plastic capacity the limit values of the material model used, that is, ultimate strain of concrete and steel and hardening ratio of steel(k), are investigated. As results, it is appeared that a large ultimate strain of concrete and steel is resulting in large plastic capactiy and also as a hardening ratio of steel increases, the plastic rotation increases significantly. Therefore, a careful attention would be paid to determine the limit values of material characteristics in the RC structures.