• Title/Summary/Keyword: steel-reinforced concrete (RC)

Search Result 828, Processing Time 0.033 seconds

Reinforced high-strength concrete square columns confined by aramid FRP jackets -part I: experimental study

  • Wang, Yuan-Feng;Ma, Yi-Shuo;Wu, Han-Liang
    • Steel and Composite Structures
    • /
    • v.11 no.6
    • /
    • pp.455-468
    • /
    • 2011
  • Although retrofitting and strengthening reinforced concrete (RC) columns by wrapping fiber reinforced polymer (FRP) composites have become a popular technique in civil engineering, the study on reinforced high-strength concrete (HSC) columns is still not sufficient. The objective of these companion papers is to investigate the mechanical properties of reinforced HSC square columns confined by aramid FRP (AFRP) jackets under concentric compressive loading. In the part I of these companion papers, an experiment was conducted on 54 confined RC specimens and nine unconfined plain specimens, the considered parameters were the concrete strength, the thickness of AFRP jackets, and the form of AFRP wrapping. The experimental process and results are presented in detail. Subsequently, some discussions on the confinement effect, failure modes, strength, and ductility of the columns are carried out.

Experimental & numerical investigation of mechanical properties in steel fiber-reinforced UHPC

  • Dadmand, Behrooz;Pourbaba, Masoud;Sadaghian, Hamed;Mirmiran, Amir
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.451-465
    • /
    • 2020
  • This paper presents experimental and numerical investigations on mechanical properties of ultra-high-performance fiber-reinforced concrete (UHPFRC) with four types of steel fibers; micro steel (MS), crimped (C), round crimped (RC) and hooked-end (H), in two fiber contents of 1% and 2% (by volume) and two lengths of 13 and 30 mm. Compression, direct tension, and four-point bending tests were carried out on four types of specimens (prism, cube, dog-bone and cylinder), to study tensile and flexural strength, fracture energy and modulus of elasticity. Results were compared with UHPC specimens without fibers, as well as with available equations for the modulus of elasticity. Specimens with MS fibers had the best performance for all mechanical properties. Among macro fibers, RC had better overall performance than H and C fibers. Increased fibers improved all mechanical properties of UHPFRC, except for modulus of elasticity, which saw a negligible effect (mostly less than 10%). Moreover, nonlinear finite element simulations successfully captured flexural response of UHPFRC prisms. Finally, nonlinear regression models provided reasonably well predictions of flexural load-deflection behavior of tested specimens (coefficient of correlation, R2 over 0.90).

Comparison of Steel Fiber Reinforced Column Capacity Using Ordinary and High Strength Concrete (콘크리트 강도에 따른 강섬유 보강기둥의 성능비교)

  • 장극관;이현호;문상덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.23-28
    • /
    • 2001
  • Since the steel fiber used in concrete to improve shear and ductility capacity, a number of laboratory tests have been studied to define shear strengthening effect according steel fiber contents in concrete. This study investigates shear strengthening effect of steel fiber in RC columns according to compression strength of concrete. From the structural performance test, following conclusions can be made; the maximum enhancement of shear strengthening effect can be achieved at about 1.0 %~l.5 % of steel fiber contents in comparison with shear capacity ratio, and ductility capacity slightly improved as steel fiber contents increased.

  • PDF

Confinement Steel Amount for Ductility Demand of RC Bridge Columns under Seismic Loading (지진하중을 받는 철근콘크리트 교각의 소요연성도에 따른 심부구속철근량)

  • Son, Hyeok-Soo;Lee, Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.715-725
    • /
    • 2003
  • This paper is a part of a research program to develop a new design method for reinforced concrete bridge columns under seismic loading. The objectives of this paper are to investigate the relationship between ductility and confinement steel amount and to propose a design equation for reinforced concrete bridge columns. Computer program NARCC was used for parametric study, which was proved to provide good and conservative analytical result especially for deformation capacity and ductility factor compared with test result. A total of 7,200 reinforced concrete columns confined with spirals or perfect circular hoops were selected by combination of variables such as section diameter, aspect ratio, concrete compressive strength, yielding strength of longitudinal and confinement steel, longitudinal steel ratio, axial load ratio, and confinement steel ratio. Based on the parametric study a new design equation for confinement steel amount considering ductility demand was proposed, which can be used in the new seismic design method, i.e. ductility-based seismic design, for RC bridge columns.

Prefabricated-HSPRCC panels for retrofitting of existing RC members-a pioneering study

  • Bedirhanoglu, Idris
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.1-25
    • /
    • 2015
  • The main goal of this study was to develop a convenient strengthening technique for retrofitting of reinforced concrete members. For this purpose a new retrofitting material so-called prefabricated-HSPRCC (high performance steel plate reinforced cementitious composite) panel was developed by using high performance concrete and perforated steel plate. Prefabricated-HSPRCC composes advantages of steel and high performance concrete. The prefabricated-HSPRCC panels were either only bonded on the specimens using epoxy mortar or anchored to the specimen by steel bolts as well as bonding. Effect of different variations such as prefabricated-HSPRCC panel thicknesses, steel plate thicknesses, puncture orientation of perforated steel plate, existence of anchorage etc. were studied through a simple experimental work. The behaviour of the specimens under vertical point load was also studied by using simple mechanics. The retrofitted specimens were found to exhibit much better performance both in terms of strength and deformation capability. The anchorage application was found to positively affect this improved performance. Furthermore, as a result of the tests the best parameters of prefabricated-HSPRCC plate for improving strength and deformation capacities were determined.

Analytical Evaluation of High Velocity Impact Resistance of Two-way RC Slab Reinforced with Steel Fiber and FRP Sheet (강섬유 및 FRP Sheet로 보강한 2방향 RC 슬래브의 고속 충격저항성능에 대한 해석적 평가)

  • Lee, Jin Young;Shin, Hyen Oh;Min, Kyeng Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents high-velocity impact analysis of two-way RC slabs, including steel fibers and strengthening with fiber reinforced polymer (FRP) sheets for evaluating impact resistance. The analysis uses the LS-DYNA program, which is advanced in impact analysis. The present analysis was performed similarly to the high-velocity impact tests conducted by VTT, the technical research center of Finland, to verify the analysis results. High-velocity impact loads were applied to $2100{\times}2100{\times}250$ mm size two-way RC slab specimens, using a non-deformable steel projectile of 47.5kg mass and 134.9m/s velocity. In this research, extra impact analysis of material specimens was carried out to verify the material models used to the analysis. The elastic-plastic hydrodynamic model, concrete damage model and orthotropic elastic model were used to simulate the non-linear softening behavior of steel fiber reinforced concrete (SFRC), and material properties of normal concrete and FRP sheets, respectively. It is concluded that the suggested analysis technique has good reliability, and can be effectively applied in evaluating the effectiveness of reinforcing/retrofitting materials and techniques. Also, the Steel fiber and FRP sheet strengthening systems provided outstanding performance under high-velocity impact loads.

Behavior of Reinforced Concrete Members Having Different Steel Arrangements (철근의 배근위치가 다른 철근콘크리트 부재의 거동 분석)

  • Kim, Ji-Hyun;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.333-336
    • /
    • 2006
  • The response of a reinforced concrete element under cyclic shear is characterized by the hysteretic loops of the shear stress-strain curves. Recent tests have shown that the orientation of steel grids in RC shear elements has a strong effect on the "pinching effect" and ductility in the post-yield hysteretic loops. In this paper, four RC elements are considered to study the effect of the steel grid orientation on "pinching effect" and ductility. The presence and absence of the pinching mechanism in the post-yield shear hysteretic loops are studied using the Rotating Angle Softened Truss Model (RA-STM) theory.

  • PDF

Hybrid Corrosion Inhibitor-Based Zwitterions and Phosphate in Reinforced Concrete: Determining Chloride Threshold and Service Life (철근 콘크리트의 Zwitterion 및 인산염 기반 하이브리드 부식 억제제: 염화물 임계값 및 사용 수명 결정)

  • Tran, Duc Thanh;Jeong, Min-Goo;Lee, Han-Seung;Yang, Hyun-Min;Singh, Jitendra Kumar
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.33-34
    • /
    • 2023
  • Corrosion of reinforcement steel is a major cause of deterioration in reinforced concrete (RC) structures. In order to protect these structures from corrosion, corrosion inhibitors are added to the concrete mix. In recent years, zwitterionic compounds have shown promising results as corrosion inhibitors in concrete due to their ability to form a protective layer on the surface of the reinforcement steel. The experimental study involves preparing concrete samples with different concentrations of adding the hybrid corrosion inhibitor at a high concentration of chloride ions. This study aims to determine the chloride threshold value and service life of hybrid corrosion inhibitors in reinforced concrete based on zwitterions. The samples are subjected to accelerated corrosion tests in a chloride environment to determine the threshold value and service life of the corrosion inhibitor. The effect of hybrid inhibitor on mechanical properties is guaranteed in allowable range. The chloride threshold concentration and service life of hybrid inhibitor containing samples perform greater than those of plain RC.

  • PDF

Seismic performance of reinforced engineered cementitious composite shear walls

  • Li, Mo;Luu, Hieu C.;Wu, Chang;Mo, Y.L.;Hsu, Thomas T.C.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.691-704
    • /
    • 2014
  • Reinforced concrete (RC) shear walls are commonly used for building structures to resist seismic loading. While the RC shear walls can have a high load-carrying capacity, they tend to fail in a brittle mode under shear, accompanied by forming large diagonal cracks and bond splitting between concrete and steel reinforcement. Improving seismic performance of shear walls has remained a challenge for researchers all over the world. Engineered Cementitious Composite (ECC), featuring incredible ductility under tension, can be a promising material to replace concrete in shear walls with improved performance. Currently, the application of ECC to large structures is limited due to the lack of the proper constitutive models especially under shear. In this paper, a new Cyclic Softening Membrane Model for reinforced ECC is proposed. The model was built upon the Cyclic Softening Membrane Model for reinforced concrete by (Hsu and Mo 2010). The model was then implemented in the OpenSees program to perform analysis on several cases of shear walls under seismic loading. The seismic response of reinforced ECC compared with RC shear walls under monotonic and cyclic loading, their difference in pinching effect and energy dissipation capacity were studied. The modeling results revealed that reinforced ECC shear walls can have superior seismic performance to traditional RC shear walls.

Seismic performance of the concrete-encased CFST column to RC beam joints: Analytical study

  • Ma, Dan-Yang;Han, Lin-Hai;Zhao, Xiao-Ling;Yang, Wei-Biao
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.533-551
    • /
    • 2020
  • A finite element analysis (FEA) model is established to investigate the concrete-encased concrete-filled steel tubular (CFST) column to reinforced concrete (RC) beam joints under cyclic loading. The feasibility of the FEA model is verified by a set of test results, consisting of the failure modes, the exposed view of connections, the crack distributions and development, and the hysteretic relationships. The full-range analysis is conducted to investigate the stress and strain development process in the composite joint by using this FEA model. The internal force distributions of different components, as well as the deformation distributions, are analyzed under different failure modes. The proposed connections are investigated under dimensional and material parameters, and the proper constructional details of the connections are recommended. Parameters of the beam-column joints, including material strength, confinement factor, reinforcement ratio, diameter of steel tube to sectional width ratio, beam to column linear bending stiffness ratio and beam shear span ratio are evaluated. Furthermore, the key parameters affecting the failure modes and the corresponding parameters ranges are proposed in this paper.