• Title/Summary/Keyword: steel-microfiber

Search Result 5, Processing Time 0.021 seconds

Development of 3D Meso-Scale finite element model to study the mechanical behavior of steel microfiber-reinforced polymer concrete

  • Esmaeili, J.;Andalibia, K.
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.413-422
    • /
    • 2019
  • In this study, 3D Meso-scale finite-element model is presented to study the mechanical behavior of steel microfiber-reinforced polymer concrete considering the random distribution of fibers in the matrix. The composite comprises two separate parts which are the polymer composite and steel microfibers. The polymer composite is assumed to be homogeneous, which its mechanical properties are measured by performing experimental tests. The steel microfiber-polymer bonding is simulated with the Cohesive Zone Model (CZM) to offer more-realistic assumptions. The CZM parameters are obtained by calibrating the numerical model using the results of the experimental pullout tests on an individual microfiber. The accuracy of the results is validated by comparing the obtained results with the corresponding values attained from testing the steel microfiber-reinforced polymer concrete incorporating 0, 1 and 2% by volume of microfibers, which indicates the excellent accuracy of the current proposed model. The results show that the microfiber aspect ratio has a considerable effect on the mechanical properties of the reinforced polymer concrete. Applying microfibers with a higher aspect ratio improves the mechanical properties of the composite considerably especially when the first crack appears in the polymer concrete specimens.

Tensile Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites (Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 인장강도 특성)

  • Yun Hyun Do;Yang Il Seung;Han Byung Chan;Hiroshi Fukuyama;Cheon Esther;Moon Youn Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.18-21
    • /
    • 2004
  • This paper discusses how steel cord and PVA hybrid fibers enhance the performance of high performance fiber reinforced cementitious composites (HPRFCC) in terms of elastic limit, strain hardening response and post peak of the composites. The effect of microfiber(PVA) blending ratio is presented. For this purpose flexure, direct tension and split tension tests were conducted. It was found that HFRCC specimen shows multiple cracking in the area subjected to the greatest bending tensile stress. Uniaxial tensile test confirms the range of tensile strain capacity from 0.5 to $1.5\%$ when hybrid fiber is used. The cyclic loading test results identified a unique unloading and reloading response for this ductile composite. Cyclic loading in tension appears not to affect the tensile response of the material if the uniaxial compressive strength during loading is not exceeded.

  • PDF

Tension and impact behaviors of new type fiber reinforced concrete

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.19-32
    • /
    • 2007
  • This paper is concentrated on the behaviors of five different types of fiber reinforced concrete (FRC) in uniaxial tension and flexural impact. The complete stress-strain responses in tension were acquired through a systematic experimental program. It was found that the tensile peak strains of concrete with micro polyethylene (PEF) fiber are about 18-31% higher than that of matrix concrete, those for composite with macro polypropylene fiber is 40-83% higher than that of steel fiber reinforced concrete (SFRC). The fracture energy of composites with micro-fiber is 23-67% higher than that of matrix concrete; this for macro polypropylene fiber and steel fiber FRCs are about 150-210% and 270-320% larger than that of plain concrete respectively. Micro-fiber is more effective than macro-fiber for initial crack impact resistance; however, the failure impact resistance of macro-fiber is significantly larger than that of microfiber, especially macro-polypropylene-fiber.

Effect of Mechanical Restraint due to Steel Microfibers on Alkali-Silica Reaction in Mortars (미세 강섬유의 구속력이 모르타르의 알칼리-실리카 반응에 미치는 영향)

  • Yi, Chong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.577-584
    • /
    • 2007
  • The effect of steel microfibers (SMF) on alkali-silica reaction (ASR) was investigated using two types of reactive aggregates, crushed opal and a pyrex rod of constant diameter. Cracks are less visible in the SMF mortars compared with the unreinforced mortars. Due to crack growth resistance behavior in SMF mortar specimens, the strength loss is eliminated and the ASR products remained well confined within the ASR site. The expansion and the ASR products were characterized by microprobe analysis and inductively coupled plasma (ICP) spectroscopy. The confinement due to SMF resulted in a higher Na and Si ion concentration of the ASR liquid extracted from the reaction site. The higher concentration reduced the ASR rate and resulted in a lower reactivity of the reactive pyrex rods in SMF mortars.

Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils

  • Beylergil, Bertan;Tanoglu, Metin;Aktas, Engin
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.113-123
    • /
    • 2019
  • In this study, carbon fiber/epoxy (CF/EP) composites were interleaved with aramid nonwoven veils with an areal weight density of $8.5g/m^2$ to improve their Mode-I fracture toughness. The control and aramid interleaved CF/EP composite laminates were manufactured by VARTM in a [0]4 configuration. Tensile, three-point bending, compression, interlaminar shear, Charpy impact and Mode-I (DCB) fracture toughness values were determined to evaluate the effects of aramid nonwoven fabrics on the mechanical performance of the CF/EP composites. Thermomechanical behavior of the specimens was investigated by Dynamic Mechanical Analysis (DMA). The results showed that the propagation Mode-I fracture toughness values of CF/EP composites can be significantly improved (by about 72%) using aramid nonwoven fabrics. It was found that the main extrinsic toughening mechanism is aramid microfiber bridging acting behind the crack-tip. The incorporation of these nonwovens also increased interlaminar shear and Charpy impact strength by 10 and 16.5%, respectively. Moreover, it was revealed that the damping ability of the composites increased with the incorporation of aramid nonwoven fabrics in the interlaminar region of composites. On the other hand, they caused a reduction in in-plane mechanical properties due to the reduced carbon fiber volume fraction, increased thickness and void formation in the composites.