• Title/Summary/Keyword: steel-girder bridges

Search Result 451, Processing Time 0.024 seconds

Test and Evaluation of the CWR on Steel Plate Girder Railway Bridge (판형교 장대레일 부설에 따른 계측 및 평가)

  • Min Kyung-Joo;Shim Hyun-Woo;An Yong-Deuk
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.568-573
    • /
    • 2005
  • To the installed CWR (Continuously Welded Rail) on steel plate girder bridges without ballast, shoes were replaced by the shoe for reduced axial force. During 9 months, from summer to winter, expansion by a temperature on girders, axial forces by a temperature on CWR, etc. are tested and the results are evaluated. Also, with the numerical analysis, the results - axial forces by a temperature on CWR, deformations of girders, etc. are compared and evaluated. From the longitudinal displacement on girders, occurred by run of trains, because of looking for the stability, the bearings for reducing axial forces are applied to the railway bridges. It is verified that the bearings for reducing axial forces disperse the axial forces by a temperature from the measurement of the forces on CWR of plate girder bridges,.

  • PDF

Distribution of Wheel Loads on Curved Steel Box Girder Bridges (곡선 강상자형교의 윤하중 분배)

  • Kim, Hee-Joong;Lee, Si-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • In the case of horizontally curved bridges, the use of curved composite box girder bridges are increased due to its functionality and for aesthetical reason. As it compared with the open section, the steel box girder bridges have advantages to resistant of distortion and corrosion. In practice the grid analysis is conducted by utilizing only the cross beam. Since the stiffness of the concrete slab is not included in the grid analysis, the cross beam is induced the distribution of the live load. In this study the affects of the radius of curvature, the number of diaphragm and cross beam to the load distribution of the curved steel box girder bridge was investigated by applying the finite element method. The results indicate that the curvature of curved bridge had a large affect of the load distribution and as the curvature was increased the load distribution factor was increased. A single diaphragm at the center of girder is important role for the load distribution effects and structural stability, but additional diaphragm did not affect it as much. The affects of the cross beam to the load distribution were investigated and its influence was minor. It can be safely concluded that the addition of cross beam does not aid the purpose of the live load distribution. And the stiffness of concrete slab for the load distribution effects should be concerned in the design of curved steel box girder bridges.

Flexural Behaviors of Prestressed Composite Girder Bridges subjected to Positive Flexural Moment (정모멘트를 받는 프리스트레스트 합성형교의 휨 거동)

  • Kang, Byeong-Su;Joo, Young-Tae;Sung, Won-Jin;Shin, Dong-Hun;Lee, Yang-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.415-418
    • /
    • 2005
  • Prestressed composite girder bridges with PS tendon at positive flexural moment region offer elastic behavior to higher loads, increased ultimate capacity and reduced structural steel weight. Two beams were tested to examine ultimate behaviors of prestressed composite girder bridges subjected to positive flexural moment. The experimental observations of the Prestressed composite girder bridges subjected to positive flexural moment are investigated and compared to the numerical results obtained by sectional analysis method, and 1-D. and 3-D. finite element analysis methods.

  • PDF

Long-term behavior of segmentally-erected prestressed concrete box-girder bridges

  • Hedjazi, S.;Rahai, A.;Sennah, K.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.673-693
    • /
    • 2005
  • A general step-by-step simulation for the time-dependent analysis of segmentally-erected prestressed concrete box-girder bridges is presented. A three dimensional finite-element model for the balanced-cantilever construction of segmental bridges, including effects of the load history, material nonlinearity, creep, shrinkage, and aging of concrete and the relaxation of prestressing steel was developed using ABAQUS software. The models included three-dimensional shell elements to model the box-girder walls and Rebar elements representing the prestressing tendons. The step-by-step procedure allows simulating the construction stages, effects of time-dependent deformations of materials and changes in the structural system of the bridges. The structural responses during construction and throughout the service life were traced. A comparison of the developed computer simulation with available experimental results was conducted and good agreement was found. Deflection of the bridge deck, changes in stresses and strains and the redistribution of internal forces were calculated for different examples of bridges, built by the balanced-cantilever method, over thirty-year duration. Significant time-dependent effects on the bridge deflections and redistribution of internal forces and stresses were observed. The ultimate load carrying capacities of the bridges and the behavior before collapse were also determined. It was observed that the ultimate load carrying capacity of such bridges decreases with time as a result of time-dependent effects.

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (II) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(II) - 해석적 연구 및 균열제어 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.133-142
    • /
    • 2000
  • This study deals with behavior of steel box girder bridges according to the concrete slab casting sequences and sectional types. The time dependent behavior of bridges caused by the differential setting of slab concrete resulting from time gap for each part of slab deck in a sequential placing method produces is analyzed. In correlation studies between girder section types and placing sequences, time dependent effects of concrete creep and shrinkage are implemented in the analytical model proposed in the previous study. Finally, field recommendations in terms of concrete slump and relative humidity are suggested to prevent early transverse cracking of concrete slabs.

  • PDF

Development of Steel Confined Prestressed Concrete Girder (I형상의 강재로 구속된 프리스트레스트 콘크리트 충전 합성거더 시공기술(SCP 합성거더))

  • 엄영호;황윤국;김정호;권책;이우종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.601-608
    • /
    • 2003
  • A new type of bridge superstructures referred to as Steel-confined Prestressed Concrete Girder (SCP Girder) was developed, which is composed of concrete, steel plate, and prestressing tendon. The girder may maximize structural advantages of these components : thus, long span bridges with low height girder may be constructed. For the effective design and fabrication of the girder, the design software program was developed and the process of fabrication established. The experimental girder designed using the program was manufactured in actual size to confirm the fabric ability of the girder. Propriety of design, structural safety, and applicability of the girder were verified through the load test.

  • PDF

A Study on the Applicability of Railway Bridge Using Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 거더를 이용한 철도교의 적용성 고찰)

  • Kim Jung-Ho;Hwang Yoon-Gook;Park Kyung-Hoon;Choi Il-Yoon;Lee Sang-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1007-1013
    • /
    • 2004
  • A new type of girder named as Steel-Confined Prestressed Concrete Girder(SCP Girder) has been developed, which is composed of concrete, steel plate, and prestressing tendon. This girder may maximize structural advantages of these components, therefore it can be used to construct the middle or long span bridge with low-height girder. To verify the propriety of design, structural safety, and applicability of this girder, static load test was carried out. In this study, a design program was developed for practical design of railway bridge using SCP girder. And to verify the applicability of SCP girder to railway bridge, structural performance and economic efficiency based on the construction cost were compared with conventional railway bridges.

  • PDF

Evaluation of Effective Temperature for Estimate Design Thermal Loads in Steel Deck of Steel Box Girder Bridges (강상자형교의 강바닥판에서 설계온도하중을 위한 유효온도 산정)

  • Shin, Dong-Wook;Kim, Kyoung-Nam;Choi, Chul-Ho;Lee, Seong-Haeng
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.77-87
    • /
    • 2013
  • A present LSD (limited state design) code for temperature load in the domestic bridge design has applied a uniform standard for various bridge types. In this study, in order to calculate the effective temperature, a specimen of steel box girder bridge section with real size dimension was manufactured. For a year, the temperature data were measured at the 18 point in steel deck of steel box girder bridges specimen. Effective temperature within the cross section according to atmospheric temperature was calculated by this experiment data. The analyzed results were very similar correlation when compared with the effective temperature of the Euro Code. Therefore, the effective temperature which calculated based on the present data could be used as the basic data in order to present to the appropriate design criteria for the thermal loads on the domestic bridge design.

Design Improvements for Crossbeams and Stringers of Steel Box Girder Bridge (강박스거더교 가로보와 세로보 합리화 연구)

  • Gil, Heungbae;Kang, Sang Gyu;Cho, Jun Sang
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • This research carried out to optimize crossbeams and stringers of steel box girder bridges, which are parts of floor system and support loading from the bridge deck. In the current design practice, the crossbeam is densely deployed with a spacing of 6 meters, and the stringer is placed between the crossbeams. The crossbeams and stringer are connected to the deck through slab anchors but the allowable stress of the compression flange is determined by the lateral-torsional buckling. To increase economic efficiency of the steel box girder bridges. the increased spacing of the crossbeam was studied. The study shows that the spacing can be increased up to 10 meters. However, higher strength steel plates are necessary. Shear studs rather than slab anchors are also recommended to prevent lateral-torsional buckling strength of the crossbeams and stringer.

Analysis of Post-tensioned Bridge by Specially Orthotropic Laminate Theory (II) - Steel Plate Girder Bridge (특별직교이방성 이론에 의한 포스트 텐션된 교량의 해석(II) - 강 판형교 -)

  • 김덕현;원치문;이정호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.141-146
    • /
    • 2001
  • A post-tensioned steel plate girder bridge with cross-beams is analyzed by specially orthotropic laminate theory. The cross-sections of both girders and cross-beams are WF types. The result is compared with that of the beam theory. This bridge with simple support is under uniformly distributed vertical load, and axial loads and moment due to post-tension. In this paper, finite difference method for numerical analysis of simple supported bridge is developed. Relatively exact solution is obtained even with small number of meshes. Theory and analysis method of specially orthotropic laminate plates used in this paper can be used in design of new bridges, and maintenance and repair of old bridges.

  • PDF