• Title/Summary/Keyword: steel-free

Search Result 842, Processing Time 0.021 seconds

Topology optimization of Reissner-Mindlin plates using multi-material discrete shear gap method

  • Minh-Ngoc Nguyen;Wonsik Jung;Soomi Shin;Joowon Kang;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.365-374
    • /
    • 2023
  • This paper presents a new scheme for constructing locking-free finite elements in thick and thin plates, called Discrete Shear Gap element (DSG), using multiphase material topology optimization for triangular elements of Reissner-Mindlin plates. Besides, common methods are also presented in this article, such as quadrilateral element (Q4) and reduced integration method. Moreover, when the plate gets too thin, the transverse shear-locking problem arises. To avoid that phenomenon, the stabilized discrete shear gap technique is utilized in the DSG3 system stiffness matrix formulation. The accuracy and efficiency of DSG are demonstrated by the numerical examples, and many superior properties are presented, such as being a strong competitor to the common kind of Q4 elements in the static topology optimization and its computed results are confirmed against those derived from the three-node triangular element, and other existing solutions.

A unified consistent couple stress beam theory for functionally graded microscale beams

  • Chih-Ping Wu;Zhen Huang
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.103-116
    • /
    • 2024
  • Based on the consistent couple stress theory (CCST), we develop a unified formulation for analyzing the static bending and free vibration behaviors of functionally graded (FG) microscale beams (MBs). The strong forms of the CCST-based Euler-Bernoulli, Timoshenko, and Reddy beam theories, as well as the CCST-based sinusoidal, exponential, and hyperbolic shear deformation beam theories, can be obtained by assigning some specific shape functions of the shear deformations varying through the thickness direction of the FGMBs in the unified formulation. The above theories are thus included as special cases of the unified CCST. A comparative study between the results obtained using a variety of CCST-based beam theories and those obtained using their modified couple stress theory-based counterparts is carried out. The impacts of some essential factors on the deformation, stress, and natural frequency parameters of the FGMBs are examined, including the material length-scale parameter, the aspect ratio, and the material-property gradient index.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (II) Evaluation of Restrained Shrinkage Characteristics and Prediction of Degree of Restraint (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (II) 구속 수축 특성 평가 및 구속도 예측)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.317-325
    • /
    • 2012
  • In this study, to evaluate the shrinkage behavior of ultra high performance fiber reinforced concrete (UHPFRC) under restrained condition, restrained shrinkage test was performed according to ring-test mostly used at home and abroad. Ring-test was performed with the various thicknesses and radii of inner steel ring to give different degree of restraint. Free shrinkage and tensile tests were carried out simultaneously to estimate the degree of restraint, stress relaxation, and shrinkage cracking potential. Test results indicated that the average steel strain and residual tensile stress were reduced as the thicker inner steel ring was used, whereas degree of restraint was increased. The steel strain, residual tensile stress and degree of restraint were hardly affected by the size of radius of inner ring. In the case of all ring specimens, shrinkage crack did not occur because the residual tensile stress was lower than the tensile strength. About 39~65% of the elastic shrinkage stress was relaxed by the sustained interface pressure, and the maximum relaxed stress was increased as the thicker inner ring was applied. Finally, the degree of restraint with age was predicted by performing non-linear regression analysis, and it was in good agreement with the test results.

Monitoring of Concrete Deterioration Caused by Steel Corrosion using Electrochemical Impedance Spectroscopy(EIS) (EIS를 활용한 철근 부식에 따른 콘크리트 손상 모니터링)

  • Woo, Seong-Yeop;Kim, Je-Kyoung;Yee, Jurng-Jae;Kee, Seong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.651-662
    • /
    • 2022
  • The electrochemical impedance spectroscopy(EIS) method was used to evaluate the concrete deterioration process related to chloride-induced steel corrosion with various corrosion levels(initiation, rust propagation and acceleration periods). The impressed current technique, with four total current levels of 0C, 13C, 65C and 130C, was used to accelerate steel corrosion in concrete cylinder samples with w/c ratio of 0.4, 0.5, and 0.6, immersed in a 0.5M NaCl solution. A series of EIS measurements was performed to monitor concrete deterioration during the accelerated corrosion test in this study. Some critical parameters of the equivalent circuit were obtained through the EIS analysis. It was observed that the charge transfer resistance(Rc) dropped sharply as the impressed current increased from 0C to 13C, indicating a value of approximately 10kΩcm2. However, the sensitivity of Rc significantly decreased when the impressed current was further increased from 13C to 130C after corrosion of steel had been initiated. Meanwhile, the double-layer capacitance value(Cdl) linearly increased from 50×10-6μF/cm2 to 250×10-6μF/cm2 as the impressed current in creased from 0C to 130C. The results in this study showed that monitoring Cdl is an effective measurement parameter for evaluating the progress of internal concrete damages(de-bonding between steel and concrete, micro-cracks, and surface-breaking cracks) induced by steel corrosion. The findings of this study provide a fundamental basis for developing an embedded sensor and signal interpretation method for monitoring concrete deterioration due to steel corrosion at various corrosion levels.

Evaluation for Applicability as the Inorganic Binder with Rapid Setting Property for Construction Material of LFS Produced from Various Manufacturing Process (다양한 철강제조공정에서 부산되는 전기로 환원슬래그의 급경성 무기결합재로의 적용성 검토)

  • Kim, Jin-Man;Choi, Sun-Mi;Kim, Ji-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.70-77
    • /
    • 2012
  • The Ladle Furnace Slag, about 20% of the electric arc furnace slag, has high content of free CaO and free MgO, which generates the expansion collapse by hydration reaction. Although many researchers have been endeavoring to recycle the EAF reducing slag in construction fields, there is not found the effective recycling method up to now. However, the LFS(Ladle Furnace Slag) contains mineral composition of the system of calcium aluminate with high-reactivity. Therefore, it is possible to developed the quick setting property and the high strength at the early age by the rapid cooling. This study aimed to check the reactive minerals and predict the reactivity with water on the LFS discharged from different steel product plants. The test results show that many types of LFS has hydration reactivity and can use in construction field as a inorganic binder with the rapid setting property.

  • PDF

Measurement of Thermal Expansion Coefficient of Package Material Using Strain Gages (스트레인 게이지를 이용한 패키지 재료의 열팽창계수 측정)

  • Yang, Hee-Gul;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.37-44
    • /
    • 2013
  • It is well known that thermal deformation of electronic packages with Pb-Sn solder and with lead-free solder is significantly affected by material properties consisting the package, as well as those of the solder itself. In this paper, the method for determining coefficient of thermal expansion(CTE) of new material is established by using temperature characteristic of strain gages, and the CTE of molding compound are obtained experimentally. The temperature-dependent CTE of molding compound for Pb-Sn solder and that for lead-free solder are obtained by using strain measurements with well known steel specimen and aluminium specimen as reference specimens, and the CTE's are also measured non-contactly by using moire interferometry. Those results are compared, and the agreement between the two types of strain gage experiment and the moire experiment show the strain gage method used in this paper to be reliable. In the case of the molding compound for Pb-Sn solder, the CTE is measured as approximately $15.8ppm/^{\circ}C$ regardless of the temperature. In the case for the lead-free solder, the CTE is measured as of approximately $9.9ppm/^{\circ}C$ below the temperature of $100^{\circ}C$, and then the CTE is increased sharply depending on the temperature, and reaches to $15.0ppm/^{\circ}C$ at $130^{\circ}C$.

The Production Process and Mock-up Test of Freeform Concrete Segments using LOM type 3D Printer (LOM 방식 3D 프린터를 이용한 비정형 콘크리트 부재 생산 프로세스 및 Mock-up test)

  • Lee, Dong-Youn;Lee, Dong-Min;Cho, Hun-Hee;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.89-98
    • /
    • 2018
  • Recently, the importance of the construction technology of the free-formed buildings is becoming more significant, as the interest and demand for the free-formed buildings are increasing. However, it takes much time and cost during the construction of free-formed buildings because the current construction technique of freeform concrete segments is manufactured by a formwork. Therefore, in this study, we suggested a new manufacturing process based on the LOM-type 3D printer for freeform concrete segments that can shorten construction time and reduce cost when constructing freeform concrete segments, and we also verified the feasibility of production process through mock-up test. The result shows that the suggested process shortened 47.8% of production time and saved 56.2% of cost compared to the existing steel formwork method. In conclusion, it is expected that the production method of freeform concrete segments using 3D printer will contribute to the improvement of productivity of freeform concrete segments construction and the activation of new construction method for free-formed building construction.

Buckling and Vibration Analysis of Antisymmetric Angle-ply laminated Composite Plates using a Three-dimensional Higher-order Theory (3차원 고차이론을 이용한 역대칭 앵글-플라이를 갖는 복합재료 적층판의 좌굴 및 진동해석)

  • Lee, Won Hong;Han, Sung Cheon;Chun, Kyoung Sik;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.97-107
    • /
    • 2003
  • To obtain a more accurate response from larninated composite structures, the effect of transverse shear deformation, transverse normal strain/stress, and nonlinear variation of in-plane displacements vis-$\\grave{a}$-vis the thickness coordinate should be considered in the analysis. The improved higher-order theory was used to determine the critical buckling load and natural frequencies of laminated composite structures. Solutions of simply supported laminated composite plates and sandwiches were obtained in closed form using Navier's technique, with the results compared with calculated results using the first order and other higher-order theories. Numerical results were presented for fiber-reinforced laminates, which show the effects of ply orientation, number of layers, side-toithickness ratio, and aspects ratio.

An Experimental Study of Piled Raft Footing on Loose Sands (느슨한 모래지반에서의 말뚝지지 전면기초에 대한 실험적 연구)

  • Kwon, Oh-Kyun;Lee, Whoal;Lee, Seung-Hyun;Oh, Se-Boong;Jang, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.439-446
    • /
    • 2003
  • In this paper the model tests have been conducted and the results are compared with those by the theoretical methods to study the behaviors of the piled raft. The size of model box is 2.2m${\times}$2m${\times}$2m. The raft is made of rigid steel plate and piles made of steel pipes. Generally the bearing capacity of group piles is designed with only the pile capacities, and the bearing capacity of raft is ignored. But the uncertainty of pile-raft-soil interaction leads to conservative design ignoring the bearing effects of raft. In the case of considering the bearing capacity of raft, the simple sum of bearing capacity of raft and that of each pile cannot be the bearing capacity of piled raft. Because the pile-raft-soil interaction affects the behavior of piled raft. Thus the effects of pile-raft-soil interaction are very important in the optimal design. In this paper, the behaviors of piled raft are studied through model tests of 2${\times}$2, 2${\times}$3, and 3${\times}$3 pile groups. The spacing between piles is changed in the model tests. And the behaviors of free standing and piled raft are also studied.

  • PDF

Experimentally validated FEA models of HF2V damage free steel connections for use in full structural analyses

  • Desombre, Jonathan;Rodgers, Geoffrey W.;MacRae, Gregory A.;Rabczuk, Timon;Dhakal, Rajesh P.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.385-399
    • /
    • 2011
  • The aim of this research is to model the behaviour of recently developed high force to volume (HF2V) passive energy dissipation devices using a simple finite element (FE) model. Thus, the end result will be suitable for use in a standard FE code to enable computationally fast and efficient analysis and design. Two models are developed. First, a detailed axial model that models an experimental setup is created to validate the approach versus experimental results. Second, a computationally and geometrically simpler equivalent rotational hinge element model is presented. Both models are created in ABAQUS, a standard nonlinear FE code. The elastic, plastic and damping properties of the elements used to model the HF2V devices are based on results from a series of quasi-static force-displacement loops and velocity based tests of these HF2V devices. Comparison of the FE model results with the experimental results from a half scale steel beam-column sub-assembly are within 10% error. The rotational model matches the output of the more complex and computationally expensive axial element model. The simpler model will allow computationally efficient non-linear analysis of large structures with many degrees of freedom, while the more complex and physically accurate axial model will allow detailed analysis of joint connection architecture. Their high correlation to experimental results helps better guarantee the fidelity of the results of such investigations.