• Title/Summary/Keyword: steel-free

Search Result 842, Processing Time 0.026 seconds

Lithium Ion Concentration Dependant Ionic Conductivity and Thermal Properties in Solid Poly(PEGMA-co-acrylonitrile) Electrolytes

  • Kim, Kyung-Chan;Roh, Sae-Weon;Ryu, Sang-Woog
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • The lithium ion concentration dependant ionic conductivity and thermal properties of poly(ethylene glycol) methyl ether methacrylate (PEGMA)/acrylonitrile-based copolymer electrolytes with $LiClO_4$ have been studied by differential scanning calorimetry (DSC), linear sweep voltammetry (LSV) and AC complex impedance measurements. In systems with 11 wt% of acrylonitrile all liquid electrolytes were obtained regardless of lithium ion concentration. Complex impedance measurements with stainless steel electrodes give ambient ionic conductivities $8.1\times10^{-6}\sim1.4\times10^{-4}S cm^{-1}$. On the other hand, a hard and soft films at ambient temperature were obtained in copolymer electrolyte system consists of 15 wt% acrylonitrile with 6 : 1 and 3 : 1 of [EO] : [Li] ratio, respectively. DSC measurements indicate the crystalline melting temperature of poly(PEGMA) disappeared completely after addition of $LiClO_4$ in this system due to the complex formation between ethylene oxide (EO) unit and lithium salt. As a result, free standing film with room temperature ionic conductivity of $1.7\times10^{-4}S cm^{-1}$ and high electrochemical stability up to 5.5V was obtained by controlling of acrylonitrile and lithium salt concentration.

Plane waves in an anisotropic thermoelastic

  • Lata, Parveen;Kumar, Rajneesh;Sharma, Nidhi
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.567-587
    • /
    • 2016
  • The present investigation is to study the plane wave propagation and reflection of plane waves in a homogeneous transversely isotropic magnetothermoelastic medium with two temperature and rotation in the context of GN Type-II and Type-III (1993) theory of thermoelasticity. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves, namely quasi-longitudinal wave (QL), quasi-transverse wave (QTS) and quasi-thermal waves (QT). The different characteristics of waves like phase velocity, attenuation coefficients, specific loss and penetration depth are computed numerically and depicted graphically. The phenomenon of reflection coefficients due to quasi-waves at a plane stress free with thermally insulated boundary is investigated. The ratios of the linear algebraic equations. These amplitude ratios are used further to calculate the shares of different scattered waves in the energy of incident wave. The modulus of the amplitude and energy ratios with the angle of incidence are computed for a particular numerical model. The conservation of energy at the free surface is verified. The effect of energy dissipation and two temperatures on the energy ratios are depicted graphically and discussed. Some special cases of interest are also discussed.

Experimental study on a new damping device for mitigation of structural vibrations under harmonic excitation

  • Alih, Sophia C.;Vafaei, Mohammadreza;Ismail, Nufail;Pabarja, Ali
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.567-576
    • /
    • 2018
  • This manuscript introduces a new damping device which is composed of a water tank and a pendulum. The new damping device can be tuned to multiple frequencies. In addition, it has a higher energy dissipation capacity when compared with the conventional Tuned Liquid Dampers (TLDs). In order to evaluate the efficiency of this new damping device a series of free vibration and forced vibration tests were conducted on a scaled down single-story one-bay steel frame. Two different configurations were studied for the mass of the pendulum that included a completely and a partially submerged mass. It was observed that the completely submerged configuration led to 44% higher damping ratio when compared with the conventional TLD. In addition, the completely submerged configuration reduced the peak displacement response of the structure 1.6 times more than the conventional TLD. The peak acceleration response of the structure equipped with the new damping device was reduced twice more than the conventional TLD. It was also found that, when the excitation frequency is lower than the resonance frequency, the conventional TLD performs better than the partially submerged configuration of the new damping device.

Vibration of antisymmetric angle-ply laminated plates under higher order shear theory

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.;Karthik, K.;Lee, J.H.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1281-1299
    • /
    • 2016
  • This paper deals with the analysis of vibration of antisymmetric angle-ply plates using spline method for higher order shear theory. Free vibration of laminated plates is addressed to show the capability of the present method in the vicinity of higher order shear deformation theory and simply supported edges of plates. The coupled differential equations are obtained in terms displacement and rotational functions. These displacement and rotational functions are approximated using cubic and quantic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The antisymmetric angle-ply fiber orientation are taken as design variables. Numerical results enable us to examine the frequencies for various geometric and material parameters and accuracy and effectiveness of the proposed method is also verified by comparative study.

The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.711-726
    • /
    • 2017
  • In the present work, by considering the agglomeration effect of single-walled carbon nanotubes, free vibration characteristics of functionally graded (FG) nanocomposite sandwich plates resting on Pasternak foundation are presented. The volume fractions of randomly oriented agglomerated single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. To determine the effect of CNT agglomeration on the elastic properties of CNT-reinforced composites, a two-parameter micromechanical model of agglomeration is employed. In this research work, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented straight CNTs. The 2-D generalized differential quadrature method (GDQM) as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The benefit of using the considered power-law distribution is to illustrate and present useful results arising from symmetric and asymmetric profiles. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the laminated FG nanocomposite plates are investigated. It is shown that the natural frequencies of structure are seriously affected by the influence of CNTs agglomeration. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated plates.

Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns

  • Liu, Wen-qi;Liu, Shan-jun;Fan, Ming-yu;Tian, Wei;Wang, Ji-peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.295-306
    • /
    • 2020
  • This paper deals with free vibration analysis of non-uniform column resting on elastic foundations and subjected to follower force at its free end. The internal pores and graphene platelets (GPLs) are distributed in the matrix according to different patterns. The model is proposed with material parameters varying in the thickness of column to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite column, it is crucial to consider porosities inside the material structure.

Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM

  • Yaghoobi, Hessameddin;Valipour, Mohammad Sadegh;Fereidoon, Abdolhossein;Khoshnevisrad, Pooria
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.753-776
    • /
    • 2014
  • In this paper, nonlinear vibration and post-buckling analysis of beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to thermo-mechanical loading are studied. The thermo-mechanical material properties of the beams are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and to be temperature-dependent. The assumption of a small strain, moderate deformation is used. Based on Euler-Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this PDE problem which has quadratic and cubic nonlinearities is simplified into an ODE problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the FG beams such as the influences of thermal effect, the effect of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogenity are presented for future references. Results show that the thermal loading has a significant effect on the vibration and post-buckling response of FG beams.

Free vibration of imperfect sigmoid and power law functionally graded beams

  • Avcar, Mehmet
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.603-615
    • /
    • 2019
  • In the present work, free vibration of beams made of imperfect functionally graded materials (FGMs) including porosities is investigated. Because of faults during process of manufacture, micro voids or porosities may arise in the FGMs, and this situation causes imperfection in the structure. Therefore, material properties of the beams are assumed to vary continuously through the thickness direction according to the volume fraction of constituents described with the modified rule of mixture including porosity volume fraction which covers two types of porosity distribution over the cross section, i.e., even and uneven distributions. The governing equations of power law FGM (P-FGM) and sigmoid law FGM (S-FGM) beams are derived within the frame works of classical beam theory (CBT) and first order shear deformation beam theory (FSDBT). The resulting equations are solved using separation of variables technique and assuming FG beams are simply supported at both ends. To validate the results numerous comparisons are carried out with available results of open literature. The effects of types of volume fraction function, beam theory and porosity volume fraction, as well as the variations of volume fraction index, span to depth ratio and porosity volume fraction, on the first three non-dimensional frequencies are examined in detail.

Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Rajabzadeh-Safaei, Niloofar
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.493-516
    • /
    • 2019
  • This paper is dedicated to nonlinear static and free vibration analysis of Uniform Distributed Carbon Nanotube Reinforced Composite (UD-CNTRC) structures under in-plane loading. The authors have suggested an efficient six-node triangular element. Mixed Interpolation of Tensorial Components (MITC) approach is employed to alleviate the membrane locking phenomena. Moreover, the behavior of the well-known LST element is considerably improved by applying an additional linear interpolation on the strain fields. Based on the rule of mixture, the properties of CNTRC are obtained. In this study, only the uniform distributed CNTs are employed through the thickness direction of element. To achieve the natural frequencies and shape modes, the eigenvalue problem is also solved. Using Total Lagrangian Principles, large amplitude free vibration is considered based on the first normalized mode shape of structure. Different well-known plane problem benchmarks and some proposed ones are studied to validate the accuracy and capability of authors' formulations. In addition, the effects of length to the height ratio of beam, CNT's characteristics, support conditions and normalized amplitude parameter on the linear and nonlinear vibration parameters are investigated.

Damage evaluation of RC beams strengthened with hybrid fibers

  • Sridhar, Radhika;Prasad, Ravi
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.9-19
    • /
    • 2019
  • This paper describes an experimental investigation on hybrid fiber reinforced concrete (HYFRC) beams. And the main aim of this present paper is to examine the dynamic characteristics and damage evaluation of undamaged and damaged HYFRC beams under free-free constraints. In this experimental work, totally four RC beams were cast and analyzed in order to evaluate the dynamic behavior as well as static load behavior of HYFRCs. Hybrid fiber reinforced concrete beams have been cast by incorporating two different fibers such as steel and polypropylene (PP). Damage of HYFRC beams was obtained by cracking of concrete for one of the beams in each set under four-point bending tests with different percentage variation of damage levels as 50%, 70% and 90% of maximum ultimate load. And the main dynamic characteristics such as damping, fundamental natural frequencies, mode shapes and frequency response function at each and every damage level has been assessed by means of non-destructive technique (NDT) with hammer excitation. The fundamental natural frequency and damping values obtained through dynamic tests for HYFRC beams were compared with control (reference) RC beam at each level of damage which has been acquired through static tests. The static experimental test results emphasize that the HYFRC beam has attained higher ultimate load as compared with control reinforced concrete beam.