• 제목/요약/키워드: steel-free

검색결과 842건 처리시간 0.03초

Corrosion Resistance of Degraded STS310S and STS347H by Cr-free Modified Si Organic/Inorganic Hybrid Coating Solution (Cr-free Si 변성 유/무기하이브리드 코팅액에 의한 열화된 STS310S 및 STS347H의 내식성)

  • Lee, So-Young;Kim, Young-Soo;Jeong, Hee-Rok;Kim, Gui-Shik;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • 제19권6호
    • /
    • pp.12-18
    • /
    • 2015
  • Austenitic stainless steels generally experience the occurrence of chromium-depleted zones at the boundaries, known as sensitization, caused by the carbide precipitation that takes place due to a welding process or heat treatment. Normally, the depleted zones become the focus of the intense corrosion. In this study, the Cr-free organic/inorganic hybrid solution was developed, and the artificially degraded STS316S and STS347H with the solution-coating investigated the corrosion resistance by salt spray test. Both the OIBD-1 and OIBD-2 solutions improved the corrosion resistance of STS310S and STS347H. The corrosion resistance with the OIBD-1 solution was better than that of OIBD-2 solution. Additionally, Both solutions have been proven excellence in adhesion ability, boiling water resistance and flexibility. However, a problem of rubbing after the boiling was found out to be overcome.

A new higher-order shear and normal deformation theory for functionally graded sandwich beams

  • Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.521-546
    • /
    • 2015
  • A new refined hyperbolic shear and normal deformation beam theory is developed to study the free vibration and buckling of functionally graded (FG) sandwich beams under various boundary conditions. The effects of transverse shear strains as well as the transverse normal strain are taken into account. Material properties of the sandwich beam faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending, free vibration and buckling analyses are obtained for simply supported sandwich beams. Illustrative examples are given to show the effects of varying gradients, thickness stretching, boundary conditions, and thickness to length ratios on the bending, free vibration and buckling of functionally graded sandwich beams.

Free vibration analysis of a rotating non-uniform functionally graded beam

  • Ebrahimi, Farzad;Dashti, Samaneh
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1279-1298
    • /
    • 2015
  • In this paper, free vibration characteristics of a rotating double tapered functionally graded beam is investigated. Material properties of the beam vary continuously through thickness direction according to the power-law distribution of the volume fraction of the constituents. The governing differential equations of motion are derived using the Hamilton's principle and solved utilizing an efficient and semi-analytical technique called the Differential Transform Method (DTM). Several important aspects such as taper ratios, rotational speed, hub radius, as well as the material volume fraction index which have impacts on natural frequencies of such beams are investigated and discussed in detail. Numerical results are tabulated in several tables and figures. In order to demonstrate the validity and accuracy of the current analysis, some of present results are compared with previous results in the literature and an excellent agreement is observed. It is showed that the natural frequencies of an FG rotating double tapered beam can be obtained with high accuracy by using DTM. It is also observed that nondimensional rotational speed, height taper ratio, power-law exponent significantly affect the natural frequencies of the FG double tapered beam while the effects of hub radius and breadth taper ratio are negligible.

The Effect on Breakdown of the Conducting Particles Between Coaxial Cylindrical Electrodes in $SF_6$ Gas ($SF_6$ 가스 동축원통전극 내의 금속이물이 절연파괴에 미치는 영향)

  • 조국희;권동진;이강수;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제12권2호
    • /
    • pp.85-90
    • /
    • 1998
  • This paper describes the breakdown characteristics of GIS by the free conducting particles under alternating voltage. If the conducting particles are present within the GIS, they can cause decrease in breakdown voltages. Various materials and sizes of free conducting particles were used to study the liftoff electric field and breakdown voltage. The measured lift-off electric fields were compared with the calculated ones for copper, steel and aluminium wire-type conducting particles. As an experimental result, it is shown that the breakdown voltages of the GIS chamber with conducting particles were lower than those without conducting particles, and were markedly dependent on the particle material and the particle sizes. Free conducting particles are important factor in particle-triggered breakdown of the GIS.he GIS.

  • PDF

Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene

  • Moradi-Dastjerdi, Rasool;Behdinan, Kamran
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.529-539
    • /
    • 2019
  • Current paper deals with thermoelastic static and free vibrational behaviors of axisymmetric thick cylinders reinforced with functionally graded (FG) randomly oriented graphene subjected to internal pressure and thermal gradient loads. The heat transfer and mechanical analyses of randomly oriented graphene-reinforced nanocomposite (GRNC) cylinders are facilitated by developing a weak form mesh-free method based on moving least squares (MLS) shape functions. Furthermore, in order to estimate the material properties of GRNC with temperature dependent components, a modified Halpin-Tsai model incorporated with two efficiency parameters is utilized. It is assumed that the distributions of graphene nano-sheets are uniform and FG along the radial direction of nanocomposite cylinders. By comparing with the exact result, the accuracy of the developed method is verified. Also, the convergence of the method is successfully confirmed. Then we investigated the effects of graphene distribution and volume fraction as well as thermo-mechanical boundary conditions on the temperature distribution, static response and natural frequency of the considered FG-GRNC thick cylinders. The results disclosed that graphene distribution has significant effects on the temperature and hoop stress distributions of FG-GRNC cylinders. However, the volume fraction of graphene has stronger effect on the natural frequencies of the considered thick cylinders than its distribution.

An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber

  • Nguyen, Xuan Ha;Kim, ChiHyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.369-376
    • /
    • 2019
  • A complete solution for a soluble-boron-free (SBF) small modular reactor (SMR) is pursued with a new burnable absorber concept, namely centrally-shielded burnable absorber (CSBA). Neutronic flexibility of the CSBA design has been discussed with fuel assembly (FA) analyses. Major design parameters and goals of the SBF SMR are discussed in view of the reactor core design and three CSBA designs are introduced to achieve both a very low burnup reactivity swing (BRS) and minimal residual reactivity of the CSBA. It is demonstrated that the core achieves a long cycle length (~37 months) and high burnup (~30 GWd/tU), while the BRS is only about 1100 pcm and the radial power distribution is rather flat. This research also introduces a supplementary reactivity control mechanism using stainless steel as mechanical shim (MS) rod to obtain the criticality during normal operation. A further analysis is performed to investigate the local power peaking of the CSBA-loaded FA at MS-rodded condition. Moreover, a simple $B_4C$-based control rod arrangement is proposed to assure a sufficient shutdown margin even at the cold-zero-power condition. All calculations in this neutronic-thermal hydraulic coupled investigation of the 3D SBF SMR core are completed by a two-step Monte Carlo-diffusion hybrid methodology.

Investigating the effect of edge crack on the modal properties of composite wing using dynamic stiffness matrix

  • Torabi, Ali Reza;Shams, Shahrokh;Fatehi-Narab, Mahdi
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.543-564
    • /
    • 2021
  • In this study free vibration analysis of a cracked Goland composite wing is investigated. The wing is modelled as a cantilevered beam based on Euler- Bernoulli equations. Also, composite material is modelled based on lamina fiber-reinforced. Edge crack is modelled by additional boundary conditions and local flexibility matrix in crack location, Castigliano's theorem and energy release rate formulation. Governing differential equations are extracted by Hamilton's principle. Using the separation of variables method, general solution in the normalized form for bending and torsion deflection is achieved then expressions for the cross-sectional rotation, the bending moment, the shear force and the torsional moment for the cantilevered beam are obtained. The cracked beam is modelled by separation of beam into two interconnected intact beams. Free vibration analysis of the beam is performed by applying boundary conditions at the fixed end, the free end, continuity conditions in the crack location of the beam and dynamic stiffness matrix determinant. Also, the effects of various parameters such as length and location of crack and fiber angle on natural frequencies and mode shapes are studied. Modal analysis results illustrate that natural frequencies and mode shapes are affected by depth and location of edge crack and coupling parameter.

The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells

  • Khayat, Majid;Baghlani, Abdolhossein;Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir
    • Steel and Composite Structures
    • /
    • 제38권1호
    • /
    • pp.47-66
    • /
    • 2021
  • This work addresses the free vibration analysis of Functionally Graded Porous (FGP) nanocomposite truncated conical shells with Graphene PLatelet (GPL) reinforcement. In this study, three different distributions for porosity and three different dispersions for graphene platelets have been considered in the direction of the shell thickness. The Halpin-Tsai equations are used to find the effective material properties of the graphene platelet reinforced materials. The equations of motion are derived based on the higher-order shear deformation theory and Sanders's theory. The Fourier Differential Quadrature (FDQ) technique is implemented to solve the governing equations of the problem and to obtain the natural frequencies of the truncated conical shell. The combination of FDQ with higher-order shear deformation theory allows a very accurate prediction of the natural frequencies. The precision and reliability of the proposed method are verified by the results of literature. Moreover, a wide parametric study concerning the effect of some influential parameters, such as the geometrical parameters, porosity distribution, circumferential wave numbers, GPLs dispersion as well as boundary restraint conditions on free vibration response of FGP-GPL truncated conical shell is also carried out and investigated in detail.

A new quasi-3D plate theory for free vibration analysis of advanced composite nanoplates

  • Smain, Bezzina;Aicha, Bessaim;Mohammed Sid Ahmed, Houari;Marc, Azab
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.839-850
    • /
    • 2022
  • This paper presents an analytical solution to study the combined effect of non-local and stretching effect on the vibration of advanced functionally graded (FG) nanoplates. A new quasi-3D plate theory is presented; there are only five unknowns and any shear correction factor is used. A new displacement field with a new shear warping function is proposed. The equilibrium equations of the FG nanoplates are obtained using the Hamilton principle and solved numerically using the Navier technique. The material properties of functionally graded nanoplates are presumed to change according to the power-law distribution of ceramic and metal constituents. The numerical results of this work are compared with those of other published results to indicate the accuracy and convergence of this theory. Hence, a profound parameterstudy is also performed to show the influence of many parameters of the functionally graded nanoplates on the free vibration responses is investigated.

Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment

  • Xu, Chen;Jing-Lei, Zhao;Gui-Lin, She;Yan, Jing;Hua-Yan, Pu;Jun, Luo
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.641-652
    • /
    • 2022
  • Fluid-conveying tubes are widely used to transport oil and natural gas in industries. As an advanced composite material, functionally graded carbon nanotube-reinforced composites (FG-CNTRC) have great potential to empower the industry. However, nonlinear free vibration of the FG-CNTRC fluid-conveying pipe has not been attempted in thermal environment. In this paper, the nonlinear free vibration characteristic of functionally graded nanocomposite fluid-conveying pipe reinforced by single-walled carbon nanotubes (SWNTs) in thermal environment is investigated. The SWCNTs gradient distributed in the thickness direction of the pipe forms different reinforcement patterns. The material properties of the FG-CNTRC are estimated by rule of mixture. A higher-order shear deformation theory and Hamilton's variational principle are employed to derive the motion equations incorporating the thermal and fluid effects. A two-step perturbation method is implemented to obtain the closed-form asymptotic solutions for these nonlinear partial differential equations. The nonlinear frequencies under several reinforcement patterns are presented and discussed. We conduct a series of studies aimed at revealing the effects of the flow velocity, the environment temperature, the inner-outer diameter ratio, and the carbon nanotube volume fraction on the nature frequency.