• Title/Summary/Keyword: steel-free

Search Result 842, Processing Time 0.042 seconds

Finite element based free vibration analysis of sandwich FGM plates under hygro-thermal conditions using zigzag theory

  • Aman Garg;Neeraj Kumar Shukla;M.Ramkumar Raja;Hanuman D. Chalak;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi;Li Li;A.M. Zenkour
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.547-570
    • /
    • 2023
  • In the present work, a comparative study has been carried out between power, exponential, and sigmoidal sandwich FGM plates for free vibration conditions under hygro-thermal conditions. Rules of mixture is used to determine effective material properties across the thickness for power-law and sigmoid sandwich FGM plates. Exponential law is used to plot effective material properties for exponentially graded sandwich FGM plates. Temperature and moisture dependent material properties were used during the analysis. Free vibration analysis is carried out using recently proposed finite element based HOZT. Present formulation satisfies interlayer transverse stress continuity conditions at interfaces and transverse shear stress-free conditions at the plate's top and bottom surfaces. The present model is free from any penalty or post-processing requirements. Several new results are reported in the present work, especially for unsymmetric sandwich FGM plates and exponential and sigmoidal sandwich FGM plates.

Process of Using BIM for Small-Scale Construction Projects - Focusing on the Steel-frame Work - (소규모 건축공사의 BIM 정보 활용을 위한 프로세스 제안 - 철골공사 중심으로 -)

  • Kim, Jin-Kwang;Yoo, Moo-Young;Ham, Nam-Hyuk;Kim, Jae-Jun;Choi, Chang-Shik
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.41-50
    • /
    • 2018
  • The current study focused on the utilization of building information modeling (BIM) data in steel-frame structures, which help to reduce project durations because they employ prefabricated structural members that are assembled on-site. In addition, a business process model was proposed using BIM data collected during the preconstruction, structural steel fabrication, and on-site construction phases of an actual steel-frame project. The ultimate expectation is that BIM data support at each phase, as well as the increased understanding among project participants, will result in an increase in project management productivity. The results from the current study are summarized as follows: To implement a BIM capable of application to steel-frame projects and data utilization, existing theories were studied to develop the construction project steps, both generally into the preconstruction (A1), steel fabrication (A2), and on-site construction phases, (A3) and specifically into 19 BIM-applicable phases. Based on the derived BIM-applicable phases, the model elements of the BIM object were identified, and the shortcomings of existing steel-frame projects were ameliorated, resulting in an improved data flow model. Moreover, for the proposed BIM data flow to progress efficiently, the BIM specialist needs to be well-acquainted with the phase-specific three-dimensional (3D) model output, and the infrastructure to construct an error-free 3D model must be provided. Based on the actual construction example, the BIM data utilized steel-frame projects - via production reports, clash checks, two-dimensional (2D) drawings, four-dimensional (4D) simulations, and 3D scanning - to make cooperation and communication among participants easier.

Selective Surface Oxidation of 590MPa TRIP Steel and Its Effect on Hot-Dip Galvanizability (590 MPa TRIP강의 선택적 표면산화 거동과 표면 산화막이 도금특성에 미치는 영향)

  • Kim, Seong-Hwan;Im, Jun-Mo;Huh, Joo-Youl;Lee, Suk-Kyu;Park, Rho-Bum;Kim, Jong-Sang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.281-290
    • /
    • 2011
  • In order to gain better understanding of the selective surface oxidation and its influence on the galvanizability of a transformation-induced plasticity (TRIP) assisted steel containing 1.5 wt.% Si and 1.6 wt.% Mn, a model experiment has been carried out by depositing Si and Mn (each with a nominal thickness of 10 nm) in either monolayers or bilayers on a low-alloy interstitial-free (IF) steel sheet. After intercritical annealing at $800^{\circ}C$ in a $N_2$ ambient with a dew point of $-40^{\circ}C$, the surface scale formed on 590 MPa TRIP steel exhibited a microstructure similar to that of the scale formed on the Mn/Si bilayer-coated IF steel, consisting of $Mn_{2}SiO_{4}$ particles embedded in an amorphous $SiO_{2}$ film. The present study results indicated that, during the intercritical annealing process of 590 MPa TRIP steel, surface segregation of Si occurs first to form an amorphous $SiO_{2}$ film, which in turn accelerates the out-diffusion of Mn to form more stable Mn-Si oxide particles on the steel surface. During hot-dip galvanizing, particulate $Fe_{3}O_{4}$, MnO, and Si-Mn oxides were reduced more readily by Al in a Zn bath than the amorphous $SiO_{2}$ film. Therefore, in order to improve the galvanizability of 590 TRIP steel, it is most desirable to minimize the surface segregation of Si during the intercritical annealing process.

A study on the stress dependence of diffusion coefficient at the elevated tenperature and the structural characterictics of 12% Cr rotor steel. (12% Cr강의 고온 확산계수의 응력의존성과 조직의 특성에 관한 연구)

  • 장윤석;김태형
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.39-47
    • /
    • 1997
  • Creep rate the elevated temperature is known to be controller by the softening process of microstructure especially in the solid solution alloys such as 125 Cr rotor steel. The change of structure is a decreasing process of the free energy of the state including stress, diffusivity of the material, and tmeperature. This study shows that diffusion coefficient, D of 12% Cr rotor steel at 953K with 74.8 MPa is 1.084~3.140*$10^{15}mm^2sec^1$ compared to $1.658*10^{24}mm^2sec^1$at 963K without stress. During creep, the growth of martensite laths accelerates the diffusion coefficient under stress due to incoherency of interface between carbides and matrix.

  • PDF

Properties of the Expansion in Concrete with Electric Arc Furnace Slag Aggregate after Aging (에이징 처리 전기로슬래그골재를 활용한 콘크리트의 팽창특성)

  • 문한영;유정훈;백우열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.613-618
    • /
    • 2002
  • Steel slag produced in steel making process is divided with electric arc furnace slag and converter slag. Compared with the blast furnace slag, converter slag has the expansibility due to the reaction with water and free CaO. Therefore it is specified in Standard Specification for Concrete in Korea that steel slag aggregate must not be used in concrete. In this study, we treat electric arc furnace slag aggregate(EAFSA) for concrete before and after several aging process to reduce expansibility. The fundamental properties are measured, which are specific gravity, unit weight, abrasion value and immersion expansion ratio, as concrete aggregate. To understand the suitability of EAFSA for concrete, we made the concrete with EAFSA and then determined the strength and the volume change in EAFSA concrete. From the results EAFSA treated with steam aging process has potentiality for concrete aggregate.

  • PDF

Effects of Alloy Additions and Annealing Parameters on Microstructure in Cold-Rolled Ultra Low Carbon Steels (극저탄소 냉연강판에서 합금원소 및 어닐링조건이 미세조직에 미치는 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.78-86
    • /
    • 2004
  • Effects of the annealing parameters on the formation of ferrites transformed at low temperatures were studied in cold-rolled ultra low carbon steels with niobium and/or chromium. Niobium and chromium were found to be effective in the formation of the low temperature transformation ferrites. The low temperature transformation ferrites more easily formed when both higher annealing temperature and longer annealing time, allowing substitutional alloying elements to distribute between phases, are in combination with faster cooling rate. It was found from EBSD study that the additions of niobium or chromium resulted in the increase in the numbers of high angle grain boundaries and the decrease in those of the low angle grain boundaries in the microstructures. Both granular bainitic ferrite and bainitic ferrite were characterized by the not clearly etched grain boundaries in light microscopy because of the low angle grain boundaries.

A study for use a vanadium oxide in steel manufacture (제강 공정중 산화바나듐활용 연구)

  • Choi, Young-Key
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.3
    • /
    • pp.55-61
    • /
    • 2009
  • Fe-V is used as raw material of vanadium in the steel making process. The purpose of this study, Fe-V is to replace the $VO_{4}$. So the distribution behavior of vanadium in $VO_{4}$ of the steel investigated. The distribution ratio of the vanadium where potential of the free oxygen ion will increase in slag decreased. When CaO and MgO content which is a basic oxide from CaO-$SiO_2$-FetO-MgOsatd. slag increases, S distribution ratio increases. CaO-$SiO_2$-FetO-MgOsatd. slag better than CaO-$SiO_2$-$Al_2O_3$-MgO slag is the recovery of vanadum and desulfurization.

A Study on the Mechanical Properties of Mortar Using Steen Slag Fine Aggregate (제강슬래그 잔골재 사용 모르타르의 역학적 특성에 대한 고찰)

  • 문한영;유정훈;박영훈;강정용;정문철;송준혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.322-325
    • /
    • 2003
  • Recently, as quality river aggregates like sands and gravels become scarce, use of crushed stones and sands, seashore sands, and seashore gravels is increasing abruptly. And, aggregates recycled from slags and waste concretes are used. However, since the converter slag easily expands and breaks due to free lime, differently from the blast-furnace slag, it is not suitable for use as concrete aggregates. Since the atomized steel slag aggregate has slippery surface and spherical shape, the mortar flowing characteristics improved as the atomized steel slag content increases, without regard to the aggregates coarseness and water/cement ratio. The flow characteristics loss rate of the mortar manufactured from steel slag aggregates was similar to that of the mortar manufactured from washed sand only. The compact strength of the mortar manufactured from coarse PS Ball were larger than that manufactured from washing sand only.

  • PDF

Role of Added Metal Oxide in the Adherence Mechanism of Low Melting Glass to Several Metal Seals (저융점유리와 각종금속과의 봉착기구에 있어서 금속산화물의 역할)

  • 정창주
    • Journal of the Korean Ceramic Society
    • /
    • v.11 no.1
    • /
    • pp.3-9
    • /
    • 1974
  • The role of added metal oxide in the adherence mechanism of low melting glass to several metal plates such as oxygen free high conducting copper, low carbon steel, chrominum galvanized on copper, and stainless steel was investigated. The metal oxide which added to glass were cupric oxide, ferric oxide, chromic oxide, and stainless steel oxide. The glass to that various metla oxide were added, sealed with several metal plates in the electric furnace at $650^{\circ}C$ for 5 minutes. The results as follows; 1) The interfacial reaction was promoted and strong chemical bonding with glass and metals by which the surface energy was decreased showed excellent sealing by addition of metal oxide. 2) When the interfacial reaction of glass and metals was promoted by addition of metal oxide found out that various adhernece mechanism were related to the sealing. 3) When the amount of metal oxide addition was 3-5% the excellent sealing was achieved.

  • PDF

Surface hardening and enhancement of Corrosion Resistance of AISI 310S Austenitic Stainless Steel by Low Temperature Plasma Nitrocarburizing treatment.

  • Lee, Insup
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.175-177
    • /
    • 2012
  • A corrosion resistance and hard nitrocarburized layer was distinctly formed on 310 austenitic stainless steel substrate by DC plasma nitrocarburizing. Basically, 310L austenitic stainless steel has high chromium and nickel content which is applicable for high temperature applications. In this experiment, plasma nitrocarburizing was performed in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-N_2-CH_4$ gas mixtures. After the experiment structural phases, micro-hardness and corrosion resistance were investigated by the optical microscopy, X-ray diffraction, scanning electron microscopy, micro-hardness testing and Potentiodynamic polarization tests. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. XRD indicated a single expanded austenite phase was formed at all treatment temperatures. Such a nitrogen and carbon supersaturated layer is precipitation free and possesses a high hardness and good corrosion resistance.

  • PDF