• Title/Summary/Keyword: steel-free

Search Result 842, Processing Time 0.025 seconds

Explosion Bulge Test in Underwater of 800MPa Grade Pre-Heat Free Welding Plate (800MPa급 무예열 용접 판재의 수중 폭파변형시험)

  • Park, Tae-Won;Song, Young-Bum;Kim, Jin-Young;Yang, Seong-Ho;Hong, Sung-Suk;Shim, In-Ok;Park, Chul-Kyu;Kim, Hee-Jin
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.63-63
    • /
    • 2010
  • The pre-heat free consumables for GMAW, SAW and FCAW processes that matches the Cu-bearing PFS-700 steel which has yield strength over 700MPa were developed and evaluated to see the suitability in military such as submarine and battle ship. Explosion bulge test in underwater was developed and applied to see the reliability of welded structure. All welding was conducted without pre-heat before welding, the interpass temperature was below $150^{\circ}C$ for all welding conditions. Tensile strength for the weld metal in GMAW, SAW and FCAW process is 887MPa, 875MPa and 813MPa, respectively, these values are similar to the base metal of PFS-700 steel of 838MPa. EBT results in GMAW, SAW and FCAW show 14.0%, 14.02% and 15.9% reduction of thickness without generation of crack, respectively and stand-off distance was set up properly to have over 14.0% reduction of thickness. Through EBT results, the developed new consumables are applicable to the weapon systems such as submarine and battle ship.

  • PDF

Quality Prediction Model for Manufacturing Process of Free-Machining 303-series Stainless Steel Small Rolling Wire Rods (쾌삭 303계 스테인리스강 소형 압연 선재 제조 공정의 생산품질 예측 모형)

  • Seo, Seokjun;Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.12-22
    • /
    • 2021
  • This article suggests the machine learning model, i.e., classifier, for predicting the production quality of free-machining 303-series stainless steel(STS303) small rolling wire rods according to the operating condition of the manufacturing process. For the development of the classifier, manufacturing data for 37 operating variables were collected from the manufacturing execution system(MES) of Company S, and the 12 types of derived variables were generated based on literature review and interviews with field experts. This research was performed with data preprocessing, exploratory data analysis, feature selection, machine learning modeling, and the evaluation of alternative models. In the preprocessing stage, missing values and outliers are removed, and oversampling using SMOTE(Synthetic oversampling technique) to resolve data imbalance. Features are selected by variable importance of LASSO(Least absolute shrinkage and selection operator) regression, extreme gradient boosting(XGBoost), and random forest models. Finally, logistic regression, support vector machine(SVM), random forest, and XGBoost are developed as a classifier to predict the adequate or defective products with new operating conditions. The optimal hyper-parameters for each model are investigated by the grid search and random search methods based on k-fold cross-validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with an accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963, and logarithmic loss of 0.0209. The classifier developed in this study is expected to improve productivity by enabling effective management of the manufacturing process for the STS303 small rolling wire rods.

Effect of Tempering Temperatures on Tensile Properties in a Low Carbon Steel (저탄소강에서 템퍼링 온도가 인장변형에 미치는 영향)

  • 이영범;김대성;남원종
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.744-749
    • /
    • 2003
  • The effect of tempering temperatures on microstructures and mechanical properties was studied in a low carbon steel. The disappearance of continuous yielding and the formation of an extended region in engineering stress-strain curves at tempering temperatures ranging from 673 to 873K was caused by the reduction of mobile dislocations during tempering and dynamic recovery during tensile deformation. In addition, the occurrence of discontinuous yielding in the sample treated at the tempering temperatures above 923K was attributed to the formation of new strain-free polygonal ferrite grain.

Modal Analysis of Steel Box Bridge by Using the Component Mode Synthesis (CMS 방법에 의한 강교량의 동적모드해석)

  • 조병완;박종칠;김영진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.177-184
    • /
    • 1997
  • The Component Mode Synthesis Method for the -vibration analysis can be applied to the large-scaled structures, which have difficulty in modeling because of their intricate shapes and boundary conditions and need much time in computational calculations. This paper uses the Component Mode Synthesis Method to analyze the free vibration for the steel box bridge having the large number of D.O.F as an example of the large structural system. By comparing the CMS method to the other method (FEM), this paper proves the accuracy of the solution in techniques and the efficiency in time.

  • PDF

Formulation and Identification of an Anisotropic Constitutive Model for Describing the Sintering of Stainless Steel Powder Compacts

  • Vagnon, Alexandre;Bouvardb, Didier.;Kapelskic, Georges
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.64-65
    • /
    • 2006
  • Anisotropic constitutive equations for sintering of metal powder compacts have been formulated from a linear viscous transversely-isotropic model in which an anisotropic sintering stress has been introduced to describe free sintering densification kinetics. The identification of material parameters defined in the model, has been achieved from thermomechanical experiments performed on 316L stainless steel warm-compacted powder in a dilatometer allowing controlled compressive loading.

  • PDF

A Study on Nitrogen Permeation Heat Treatment of Super Martensitic Stainless Steel (수퍼 마르텐사이트계 스테인리스강의 질소침투 열처리)

  • Yoo, D.K.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2006
  • The phase changes, nitride precipitation and hardness variations of 14%Cr-6.7Ni-0.65Mo-0.26Nb-0.05V-0.03C super martensitic stainless steel were investigated after nitrogen permeation heat treatment at a temperature range between $1050^{\circ}C$ and $1150^{\circ}C$. The nitrogen-permeated surface layer was transformed into austenite. The rectangular type NbN, NbCrN precipitates and fine round type precipitate were coexisted in the surface austenite layer, while the interior region that was free from nitrogen permeation kept the martensitic phase. The hardness of surface austenite showed 280 Hv, while the interior region of martensite phase represented 340 Hv. When tempering the nitrogen-permeated steel at $450^{\circ}C$, a maximum hardness of 433 Hv was appeared, probably this is attributed to the secondary hardening effect of the precipitates. The nitrogen concentration decreased gradually with increasing depth below the surface after showing a maximum of 0.3% at the outmost surface. The strong affinity between nitrogen and Cr enabled the substitutional element Cr to move from interiors to the surface when nitrogen diffuse form surface to the interior. Corrosion resistance of nitrogen permeated steel was superior to that of solution-anneaed steel in the solution of 1N $H_2SO_4$.

Net Shape Forming Process for Ball Stud Using High Strength Micro-Alloyed Cold Forging Steel (냉간 비조질강을 이용한 볼 스터드의 정형가공 공정연구)

  • Yoon, D.J.;Choi, H.J.;Lee, H.W.;Lee, G.A.;Jang, B.L.;Seo, S.L.;Choi, S.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.562-567
    • /
    • 2006
  • Micro-alloyed steel or heat-treatment-free used in clean technology have been replacing for conventional quenched-and-tempered structural steels since the micro-alloyed forging steel was developed in early 1970s in Germany for saving money of heat treatment, simplified process, short delivery and good productivity. In this paper, ball stud assembled in steering system for automobile was selected to compare conventional process making heat treatment with new process using high strength micro-alloyed steel without heat treatment. The conventional process for ball stud was composed of a total of 6 steps including upsetting, forward extrusion, machining, burnishing and tread rolling with heat treatment and shot blasting. As opposed to conventional process, newly proposed process for ball stud using the clean technology without heat treatment is simplified such as forward extrusion, heading, upsetting, forming having a flange shape and tread rolling. Also net shape forming process to achieve specified process not to include machined step fur manufacturing the ball stud was applied to newly simplified process since micro-alloyed steel is difficult to be formed.

Impedance Spectroscopy Studies on Corrosion Inhibition Behavior of Synthesized N,N’-bis(2,4-dihydroxyhydroxybenzaldehyde)-1,3-Propandiimine for API-5L-X65 Steel in HCl Solution

  • Danaee, I.;Bahramipanah, N.;Moradi, S.;Nikmanesh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.153-160
    • /
    • 2016
  • The inhibition ability of N,N-bis(2,4-dihydroxyhydroxybenzaldehyde)-1,3-Propandiimine (DHBP) as a schiff base against the corrosion of API-5L-X65 steel in 1 M HCl solution was evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and scanning electron microscopy. Electrochemical impedance studies indicated that DHBP inhibited corrosion by blocking the active corrosion sites. The inhibition efficiency increased with increasing inhibitor concentrations. EIS data was analysed to equivalent circuit model and showed that the charge transfer resistance of steel increased with increasing inhibitor concentration whilst the double layer capacitance decreased. The adsorption of this compound obeyed the Langmuir adsorption isotherm. Gibbs free energy of adsorption was calculated and indicated that adsorption occurred through physical and spontaneous process. The corrosion inhibition mechanism was studied by potential of zero charge. Polarization studies indicated that DHBP retards both the cathodic and anodic reactions through adsorption on steel surface. Scanning electron microscopy was used to study the steel surface with and without inhibitor.

Properties of Fresh Mortar Mixed with Steel Furnace Slag Powder (제강슬래그 분말을 혼입한 굳지 않은 모르타르의 특성)

  • Lee, Jeong-Taek;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.33-34
    • /
    • 2023
  • Currently, research on construction materials using industrial by-products is being conducted in the Inhan construction industry due to CO2 emissions during the cement production process and a shortage of aggregates. Among these, research has been conducted to use steel furnace slag as an aggregate by reducing the reactivity of free-CaO, which has the characteristic of expanding through open storage, aging, and rapid cooling. However, research on the use of powder as a cement admixture or substitute is insufficient. Therefore, this study aims to analyze the properties of fresh mortar using steel furnace slag powder. The mixing ratio of steel furnace slag powder was divided into three levels: 0, 20, and 40 (%), and the test items were flow and unit weight. The experimental results showed that as the mixing ratio of steel furnace slag powder increased, flow and unit weight tended to increase. Therefore, it is expected to have a positive effect on improving workability or strength as a cement admixture.

  • PDF

Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations

  • Akgoz, Bekir;Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.403-421
    • /
    • 2011
  • In the present manuscript, geometrically nonlinear free vibration analysis of thin laminated plates resting on non-linear elastic foundations is investigated. Winkler-Pasternak type foundation model is used. Governing equations of motions are obtained using the von Karman type nonlinear theory. The method of discrete singular convolution is used to obtain the discretised equations of motion of plates. The effects of plate geometry, boundary conditions, material properties and foundation parameters on nonlinear vibration behavior of plates are presented.