• 제목/요약/키워드: steel-fiber concrete

검색결과 1,314건 처리시간 0.026초

Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties

  • Fayed, Sabry;Mansour, Walid
    • Advances in concrete construction
    • /
    • 제10권4호
    • /
    • pp.319-332
    • /
    • 2020
  • The impacts of reinforcing concrete matrix with steel fibers, polypropylene fibers and recycled plastic fibers using different volume fractions of 0.15%, 0.5%, 1.5% and 2.5% on the compressive and tensile characteristics are experimentally investigated in the current research. Also, flexural behavior of plain concrete (PC) beams, shear performance of reinforced concrete (RC) beams and compressive characteristics of both PC and RC columns reinforced with recycled plastic fibers were studied. The experimental results showed that the steel fibers improved the splitting tensile strength of concrete higher than both the polypropylene fibers and recycled plastic fibers. The end-hooked steel fibers had a positive effect on the compressive strength of concrete while, the polypropylene fibers, the recycled plastic fibers and the rounded steel fibers had a negative impact. Compressive strength of end-hooked steel fiber specimen with volume fraction of 2.5% exhibited the highest value among all tested samples of 32.48 MPa, 21.83% higher than the control specimen. The ultimate load, stiffness, ductility and failure patterns of PC and RC beams in addition to PC and RC columns strengthened with recycled plastic fibers enhanced remarkably compared to non-strengthened elements. The maximum ultimate load and stiffness of RC column reinforced with recycled plastic fibers with 1.5% volume fraction improved by 21 and 15%, respectively compared to non-reinforced RC column.

Effect of Amorphous Steel Fiber on the Spalling Characteristics of High-strength Concrete (고강도콘크리트의 폭렬특성에 미치는 비정질 강섬유의 영향)

  • Kim, Jong-Ho;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.32-33
    • /
    • 2019
  • This study evaluated the effect of amorphous steel fibers on the spalling characteristics of high-strength concrete. with mix proportions of polypropylene (PP) fibers of 0.15% by concrete volume, and proportions of amorphous steel fibers of 0.3% and 0.5% by concrete volume. In the range of 0.3 vol% of amorphous steel fiber, the effect of suppression of the spalling and the prevention of degradation of strength was shown, but it was evaluated to be ineffective in the suppression of the spalling due to interferences in formation of pore network in the range of 0.5 vol.%.

  • PDF

Vibration analysis of steel fiber reinforced self-compacting concrete beam on elastic foundation

  • Ozdemir, Mahmut Tunahan;Kobya, Veysel;Yayli, Mustafa Ozgur;Mardani-Aghabaglou, Ali
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.85-97
    • /
    • 2021
  • In this study, the effect of steel fiber utilization, boundary conditions, different beam cross-section, and length parameter are investigated on the free vibration behavior of fiber reinforced self-compacting concrete beam on elastic foundation. In the analysis of the beam model recommended by Euler-Bernoulli, a method utilizing Stokes transformations and Fourier Sine series were used. For this purpose, in addition to the control beam containing no fiber, three SCC beam elements were prepared by utilization of steel fiber as 0.6% by volume. The time-dependent fresh properties and some mechanical properties of self-compacting concrete mixtures were investigated. In the modelled beam, four different beam specimens produced with 0.6% by volume of steel fiber reinforced and pure (containing no fiber) SCC were analyzed depending on different boundary conditions, different beam cross-sections, and lengths. For this aim, the effect of elasticity of the foundation, cross-sectional dimensions, beam length, boundary conditions, and steel fiber on natural frequency and frequency parameters were investigated. As a result, it was observed that there is a noticeable effect of fiber reinforcement on the dynamic behavior of the modelled beam.

Shear Behavior of Polymer Cement High Strength Concrete Beams Mixed with Steel Fiber (강섬유 혼입 폴리머 시멘트 고강도 콘크리트 보의 전단거동)

  • 곽계환;박종건;곽경헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제44권1호
    • /
    • pp.93-102
    • /
    • 2002
  • Steel fiber and polymer are used widely for reinforcement material of RC structures because of its excellences of the durability, serviceability as well as mechanical properties. The purpose of this study is to investigate the shear behavior of polymer cement high strength concrete beams mixed with steel fiber. The compressive strength of concrete was based on the 100$\times$200 mm cylinder specimens. The compressive strength of concrete are 320$kgf/cm^2$, 436 $kgf/cm^2$ and 520 $kgf/cm^2$ in the 28 days. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. Also, load-strain and load-deflection examined. During the test cracks were sketched against the load values according to the growth of crack. result are as follows; (1) The failure modes of the specimens are increased in rigidity and durability with mixing steel fiber and polymer. (2) The load of initial crack was similar a theory of shear-crack strength. (3) The deflection and strain at failure load of Polymer-steel fiber high strength concrete beams were increased, improving the brittleness of the high strength concrete.

Explosionproof Properties of High Strength Steel Fiber Reinforced Concrete with the Contents of Steel Fiber (섬유혼입율 변화에 따른 고강도 섬유보강 콘크리트의 방폭특성)

  • 이광설;안영준;박구병;김성수;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.303-306
    • /
    • 1999
  • For the purpose of Military means, explosion proof concrete, which protect the structures from the damage due to the explosion of bomb and maintain its shape, is required to develop. Therefore, in this paper, mechanical and explosionproof properties of concrete are tested under various steel fiber contents and member size. According to the experimental results, compressive, tensile and flexural strength go up with the increase of fiber contents. Energy bearing capacities is higher with the increase of fiber contents. Especially, it is confirmed that slurry infiltrated fiber concrete (SIFCON) gains in high strength and has high energy bearing capacities. SIFCON is expected to apply in the construction of explosion proof structures.

  • PDF

An investigation into the shear strength of SFRC beams with opening in web using NFEM

  • Karimi, Mohammad;Hashemia, Seyed Hamid
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.539-546
    • /
    • 2018
  • Making a transverse opening in concrete beams in order to accommodate utility services through the member instead of below or above of that, sometimes may be necessary. It is obvious that inclusions of an opening in a beam decreases its flexural and shear strengths. Fabricated steel bars are usually used to increase the capacity of the opening section, but details of reinforcements around the opening are dense and complex resulting in laborious pouring and setup process. The goal of this study was to investigate the possibility of using steel fibers in concrete mixture instead of complex reinforcement detailing order to strengthen opening section. Nonlinear finite element method was employed to investigate the behavior of steel fiber reinforced concrete beams. The numerical models were validated by comparison with experimental measurements tested by other investigators and then used to study the influence of fiber length, fiber aspect ratio and fiber content on the shear performance of SFRC slender beams with opening. Finally, it was concluded that the predicted shear strength enhancement is considerably influenced by use of steel fibers in concrete mixture but the effect of fiber length and fiber aspect ratio wasn't significant.

Workability and Strength Properties of Hybrid Fiber Reinforced Concrete Using Amorphous Steel Fiber and Organic Fiber (비정질 강섬유와 유기섬유를 이용한 하이브리드 섬유보강 콘크리트의 작업성 및 강도 특성)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin;Kim, Jin-Oo;Lee, Jun-Cheol
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • 제6권4호
    • /
    • pp.58-63
    • /
    • 2015
  • The purpose of this experimental research is to evaluate the workability and strength properties of hybrid fiber reinforced concrete containing amorphous steel fiber and organic fiber. For this purpose, the hybrid fiber reinforced concrete containing amorphous steel fiber(ASF) with polyamide(PA) and polyvinyl alcohol(PVA) fiber, respectively were made according to their total volume fraction of 0.5% for water-binder ratio of 33%, and then the characteristics such as the workability, compressive strength, and flexural strength of those were investigated. It was observed from the test results that the workability and compressive strength at 7 and 28 days were decreased and the flexural strength at 7 and 28 days was increased with increasing ASF and decreasing organic fiber.

An Experimental Study on the Performance Evaluation of Structural Synthetic Fiber-Reinforced Shotcrete (구조용 합성섬유보강 숏크리트의 성능평가에 관한 실험연구)

  • 오병환;최승원;박대균;한일영;김방래;신용석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.373-378
    • /
    • 2003
  • The cement-based composites have relatively low tensile strength and toughness. The fiber addition is one of the most important ways of increasing the toughness of concrete. The steel fibers have been used conventionally in the shotcrete of tunnel lining. Recently, the structural synthetic fibers were developed and used frequently in some actual tunnel shotcreting in foreign countries. Now types of synthetic fibers have been developed in this study. The purpose of this study is to explore the strength and toughness characteristic of the concrete reinforced with synthetic fibers developed in this study. The result were compared with those of steel fiber reinforced concrete. It is seen that the performance of synthetic fiber reinforced concrete is good as much as that of steel fiber reinforced concrete, while the synthetic fibers have advantages in corrsion resistance and economy.

  • PDF

The Test Methodological Effects on the Flexural Toughness of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 휨인성에 영향을 미치는 실험방법적 요인)

  • 한승환;이형준;오병환;조재열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.380-385
    • /
    • 1998
  • Nowadays, shotcrete plays an essential part in he construction of underground structures, and steel fiber is so useful for increasing the toughness of the concrete that is spotlighted at tunnel or pavement site. A variety of tests have been developed to measure and quantity the improvements achievable in steel fiber reinforced concrete(SFRC) and shotcrete. But Korea doesn`t have specific standards in this respect, and the only criteria that KHC(Korea Highway Corporation) applies to tunnel shotcreting are flexural strength and toughness quotient. Test results in order to manage the quality of steel fiber reinforced concrete and shocrete are very affected by various test method. Therefore, this study deals with the test methodological effects on SFRC quality. The major interests are loading method, that is, load control and displacement control, loading velocity, support condition.

  • PDF

A Study on Crack Behavior of Chemically Prestressed Steel Fiber Reinforced Concrete (화학적 프리스트레스가 도입된 강섬유 보강 콘크리트의 균열거동에 대한 연구)

  • Shim, Byul;Kim, Young-Kyun;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.121-124
    • /
    • 2004
  • In this paper, a series of fracture tests are performed for the chemically prestressed steel fiber reinforced concrete (SFRC) manufactured with addition of expansive additives for the study of fracture behavior and characteristics. Cracking loads of the chemically prestressed SFRC are greater than that of normal concrete and those are also increased by increasing of steel fiber volume. Thus, it is necessary to obtain optimum steel fiber volume to induce chemically prestressing effectively to concrete members. The result of three-points bending tests shows that early-cracking resistance of the chemically prestressed SFRC is increased without increase of fracture energy. From the test, the tension softening curves are also obtained by poly-linear approximation method and simulated behaviors by using the determined tension softening curves agree with experimental results. And it is confirmed that cracking and ultimate behaviors of chemically prestressed SFRC can be predicted by using obtained fracture characteristics.

  • PDF