• Title/Summary/Keyword: steel-fiber concrete

Search Result 1,314, Processing Time 0.028 seconds

Effect of Fiber Blending on Material Property of Hybrid Fiber Reinforced Concrete (섬유 혼입 비율에 따른 하이브리드 섬유보강 콘크리트의 재료특성)

  • Kim, Hag-Youn;Seo, Ki-Won;Lee, Wok-Jae;Kim, Nam-Ho;Park, Choon-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.345-348
    • /
    • 2004
  • In this study, an effect of fiber blending on material property of hybrid fiber reinforced concrete (HFRC) was evaluated. Also, optimized association and the mixing rate of fiber for HFRC was determined. Test result shows, in the case of mono fiber reinforced concrete, use of steel fiber in concrete caused increment in tensile and bending strength as the blended ratio increases, while use of carbon fiber and glass fiber caused increment in compressive strength. Use of hybrid fiber reinforcement in concrete caused a significant influence on its fracture behavior; consequently, caused increase by mixing rate of steel fiber and contributed by carbon fiber, glass fiber, celluloid fiber in reinforcement effect in order.

  • PDF

Investigation of Flexural Toughness Development of Steel Fiber Reinforced Concrete at Early Ages (강섬유 보강 콘크리트의 조기 재령에서의 휨 인성 발현에 관한 연구)

  • Lee, Chang-Joon;Shin, Sung-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.103-110
    • /
    • 2009
  • Since the mechanical properties of cement-based materials are time-dependent due to the prolonged cement hydration process, those of fiber reinforced concrete(FRC) may also be time-dependent. Toughness is one of important properties of FRC. Therefore, it should be investigated toughness development of FRCs with curing ages to fully understand the time-dependent characteristics of FRCs. To this end, the effect of curing ages on flexural toughness development of steel fiber reinforced concrete is studied. Three point bending test with notched beam specimen was adapted for this study. Hooked-end steel fiber(DRAMIX 40/30) was used as a fiber ingredient to investigate w/c ratio and fiber volume fraction effect on toughness development during curing. Three different water-cement ratios(0.44, 0.5 and 0.6) and fiber volume fractions(0%, 0.5% and 1%) were used as influence factors. Each mixture specimens were tested at five different ages, 0.5, 1, 3, 7 and 28 days. The study shows that flexure toughness development with age is quite different than other concrete material properties such as compressive strength. The study also shows that the toughness development trend correlates more closely to water/cement ratio than to fiber volume fraction.

Influence of pre-compression on crack propagation in steel fiber reinforced concrete

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, a new understanding is presented on the microcracking behavior of high strength concrete (HSC) with steel fiber addition having prior compressive loading history. Microcracking behavior at critical stress (σcr) region, using seven fiber addition volume of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0% was evaluated, at two aspect ratios (60 and 75). The specimens were loaded up to a specified compressive stress levels (0.70fc-0.96fc), and subsequently subjected to split tensile tests. This was followed by microscopic analyses afterwards. Four compressive stress levels as percentage of fc were selected according to the linearity end point based on stress-time (σ-t) diagram under uniaxial compression. It was seen that pre-compression has an effect on the linearity end point as well as fiber addition where it lies within 85-91% of fc. Tensile strength gain was observed in some cases with respect to the 'maiden' tensile strength as oppose to tensile strength loss due to the fiber addition with teething effect. Aggregate cracking was the dominant failure mode instead of bond cracks due to improved matrix quality. The presence of the steel fiber improved the extensive failure pattern of cracks where it changes from 'macrocracks' to a branched network of microcracks especially at higher fiber dosages. The applied pre-compression resulted in hardening effect, but the cracking process is similar to that in concrete without fiber addition.

An Experimental Study on the Fracture Strength of Steel Fiber Reinforced Concrete

  • Chai, Won-Kyu
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.19-21
    • /
    • 2012
  • In this thesis, fracture test was performed in order to investigate the fracture strength of SFRC(steel fiber reinforced concrete) structures. The relationship between the compressive force and strain value of SFRC specimens were observed under the compressive strength test. From the fracture test results, the relationship between percentage of fiber by volume, compressive strength, elastic modulus, and tensile strength of SFRC beams were studied, and the measured elastic modulus of SFRC were compared with the calculated elastic modulus by ACI committee 544.

Corrosion effects on mechanical behavior of steel fiber reinforced concrete, including fibers from recycled tires

  • Ansari, Mokhtar;Safiey, Amir
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.367-375
    • /
    • 2020
  • Today, the use of special technologies in the admixture of concrete has made tremendous progress, but the problem that has always existed in the construction of concrete members is the brittleness and lack of loading bearing after cracking, which leads to reduced strength and energy absorption. One of the best ways to fix this is to reinforce the concrete with steel fibers. Steel fibers also control cracks due to dry shrinkage, reduce structural crack width, and improve impact resistance. In this study, recycled steel fibers from worn tires have been used in the manufacture of concrete samples, the secondary benefits of which are the reduction of environmental pollution. One of the disadvantages of steel fiber reinforced concrete is the corrosion of steel fibers and their deterioration in harsh environments such as coastal areas. Corrosion caused by chlorine ions in metal fibers causes deterioration and early decommissioning of structures in corrosive environments. In this study, the effect of the dosage of steel fibers (dosages of 15, 30, and 45 kg of fibers per cubic meter of concrete) and aspect ratio of fibers (aspect ratio of 25 and 50) on compressive and flexural strength of concrete samples are investigated. In the following, the effect of fiber corrosion on the results of the mechanical properties of concrete samples is examined. The results show that the increase in fiber causes a relative increase in compressive strength, and a significant increase in flexural strength, and corrosion of steel fibers without reducing workability reduces compressive strength and flexural strength by up to 6 to 11%, respectively.

Explosion-proof Properties of High Strength Steel Fiber Reinforced Concrete made with Contents of Steel Fiber (섬유혼입율 변화에 따른 고강도 섬유보강 콘크리트의 방폭특성)

  • Han, Cheon-Goo;Kim, Seong-Soo;Park, Goo-Byeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.129-136
    • /
    • 2000
  • In the side of military purpose, the explosion proof concrete, which contributes to protect the military facilities from damages due to the explosion of bomb and to maintain their shapes, is required to develop, Therefore. in this paper, mechanical and explosion-proof properties of concrete are tested under various steel fiber contents and member size. According to the experimental results, compressive, tensile and flexural strength gain higher levels with an increase in fiber contents. It shows that energy bearing capacities are higher with an increase in fiber contents. Especially. it is confirmed that slurry infiltrated fiber concrete(SIFCON) gains high strength and has high energy bearing capacities. SIFCON is expected to be applied in the construction of explosion proof structures.

  • PDF

Behavior of durable SFRC Structures for the Protection of Underground Environment (토양과 지하수를 보호하기 위한 구조물에 있어서 강섬유콘크리트의 특성)

  • 강보순;심형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.329-334
    • /
    • 2001
  • In this paper, the crack properties of steel fiber reinforced concrete (SFRC) structures for environment by experimental and analytical methods are discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to break crack, SFRC has better crack properties than that of reinforced concrete (RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete.

  • PDF

Experimental investigating the properties of fiber reinforced concrete by combining different fibers

  • Ghamari, Ali;Kurdi, Javad;Shemirani, Alireza Bagher;Haeri, Hadi
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.509-516
    • /
    • 2020
  • Adding fibers improves concrete performance in respect of strength and plasticity. There are numerous fibers for use in concrete that have different mechanical properties, and their combination in concrete changes its behavior. So, to investigate the behavior of the fiber reinforced concrete, an in vitro study was conducted on concrete with different fiber compositions including different ratios of steel, polypropylene and glass fibers with the volume of 1%. Two forms of fibers including single-stranded and aggregated fibers have been used for testing, and the specimens were tested for compressive strength and dividable tensile strength (splitting tensile) to determine the optimal ratio of the composition of fibers in the concrete reinforced by hybrid fibers. The results show that the concrete with a composition of steel fibers has a better performance than other compounds. In addition, by adding glass and propylene fibers to the composition of steel fibers, the strength of the samples is reduced. Also, if using the combination of fibers is required, the use of a combination of glass fibers with steel fibers will provide a better compressive strength and tensile strength than the combination of steel fibers with propylene.

Shear Strength of Steel Fiber Concrete - Plain Concrete Composite Beams (강섬유보강 콘크리트와 일반 콘크리트 합성보의 전단강도)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.501-510
    • /
    • 2015
  • Composite construction of precast concrete and cast-in-place concrete is currently used for the modular construction. In this case, the use of steel fiber reinforced concrete (SFRC) could be beneficial for precast concrete. However, the shear strength of such composite members (SFRC and cast-in-place concrete) is not clearly defined in current design codes. In the present study, steel fiber composite beam tests were conducted to evaluate the effect of steel fibers on the composite members. The test variables are the area ratio of SFRC and shear reinforcement ratio. The test results showed that when minimum horizontal shear reinforcement was used, the shear strength of composite beams increased in proportion to the area ratio of steel fiber reinforced concrete. However, because of the steel fiber, the composite beams were susceptible to horizontal shear failure. Thus, minimum horizontal shear reinforcement is required for SFRC composite beams.

Size Effect for Tension Softening Behavior of Ultra-Strength Steel Fiber Reinforcement Concrete (초고강도 강섬유 보강 콘크리트의 인장연화거동에 대한 크기효과)

  • Lee, Si-Young;Hong, Ki-Nam;Kim, Sung-Wook;Park, Jung-Jun;Han, Sang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.861-864
    • /
    • 2008
  • This study was performanced to investigate the fractural and fatigue behavior of ultra-strength steel fiber reinforcement concrete. The tension softening diagram can describe the post-cracking behavior of concrete in tension. In this paper, Three points bending tests with a notch have been carried out to investigate tensile properties of the steel fiber reinforced concrete(SFRC) according to variation of the height. Poly-linear approximation method combined with FEM analysis is applied to the steel fiber reinforced concrete to determine the tension softening diagrams and also to certify the validity of the method. The simulated load-CMOD curves using the determined softening diagrams though the poly-linear approximation method completely agree with the measured ones.

  • PDF