• Title/Summary/Keyword: steel-fiber

Search Result 1,943, Processing Time 0.024 seconds

Evaluation of Shear Strength in SFRC Beam without Stirrups Considering Steel Fiber Strengthening Factor (강섬유 보강계수를 고려한 전단보강 되지 않은 SFRC 보의 전단내력 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.213-220
    • /
    • 2004
  • The purpose of this study is to evaluate the shear strength of SFRC beam that has no stirrups by steel fiber strengthening factor. To achieve the goal of this study, two stage investigation, which is material and member level, is studied with literature and experimental side. From the reviewing of previous researches and analyzing of material and member test results, strengthening parameter of SFRC is defined as steel fiber coefficient. Based on above results, steel fiber strengthening factor is proposed. And by reviewing the proposed equation of shear strength estimation, equation of Shin was well estimated the shear strength of SFRC beams. Therefore, shear strength equation of SFRC, which is composed by Shin's Eq. and steel fiber strengthening factor, is proposed by regression analysis of test results.

Development of Estimation of Model for Mechanical Properties of Steel Fiber Reinforced Concrete according to Aspect Ratio and Volume Fraction of Steel Fiber (강섬유의 형상비와 혼입률에 따른 강섬유 보강 콘크리트 보의 역학적 특성 추정 모형 개발)

  • Kwak, Kae-Hwan;Hwang, Hae-Sung;Sung, Bai-Kyung;Jang, Hwa-Sup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.85-94
    • /
    • 2006
  • Practially useful method of steel fiber for construction work is presented in this study. The most important purpose of this study is to develop a model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus, and splitting strength were performed with self-made cylindrical specimens of variable aspect ratios and volume fractions. The experiment showed that compressive strength was not in direct proportion to volume fraction which doesn't seem to have great influence over compressive strength. However, splitting strength showed almost direct proportion to aspect ratio and volume fraction. Improvement of optimal efficiency was confirmed when the aspect ratio was 70. Experiments on flexural strength, fracture energy, and characteristic length were carried out with self-manufactured beams with notch. As a result, increases of flexural strength, fracture energy, and characteristic length according to increase of volume fraction tend to be prominent when aspect ratio is 70. The steel fiber improves concrete to be more ductile and tough. Moreover, regression analysis was the performed and predictable model was developed after determining variables. With comparison and analysis of suggested estimated values and measured data, reliance of the model was verified.

Investigation of steel fiber effects on concrete abrasion resistance

  • Mansouri, Iman;Shahheidari, Farzaneh Sadat;Hashemi, Seyyed Mohammad Ali;Farzampour, Alireza
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.367-374
    • /
    • 2020
  • Concrete surfaces, industrial floors, sidewalks, roads and parking lots are typically subjected to abrasions. Many studies indicated that the abrasion resistance is directly related to the ultimate strength of the cured concrete. Chemical reactions, freeze-thaw cycles, and damages under abrasion are among many factors negatively affecting the concrete strength and durability. One of the major solutions to address the abrasive resistance of the concrete is to use fibers. Fibers are used in the concrete mix to improve the mechanical properties, strength and limit the crack propagations. In this study, implementation of the steel fibers in concrete to enhance the abrasive resistance of the concrete is investigated in details. The abrasive resistance of the concrete with and without steel fibers is studied with the sandblasting technique. For this purpose, different concrete samples are made with various hooked steel fiber ratios and investigated with the sandblasting method for two different strike angles. In total, 144 ASTM verified cube samples are investigated and it is shown that those samples with the highest steel fiber ratios have the highest abrasive resistance. In addition, the experiments determine that there is a meaningful correlation between the steel fiber percentage in the mix, strike angle and curing time which could be considered for improving structural behavior of the fiber-reinforced concrete.

Fatigue Behavior of Steel Fiber Reinforced Concrete Continuous Beams under Cyclic Loading (반복하중하에서 강섬유보강 철근콘크리트 연속보의 피로거동)

  • Kwak, Kae-Hwan;Park, Jong-Gun;Jang, Hwa-Sup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.47-58
    • /
    • 2004
  • As concrete structures are getting larger, higher, longer and more specialized, it is more required to develop steel fiber concrete and apply to the real world. In this research, it is aimed to have fatigue strength examined, varying the steel fiber content of 0%, 0.75%, 1.00%, 1.25% by experimental study of fatigue behavior of the steel fiber reinforced concrete continuous beams under cyclic loading. The ultimate load and initial load of flexural cracking were measured by static test. In addition, the load versus strain relation, load versus deflection relation, crack pattern and fracture mode by increasing weight were observed. On the other hand, the crack propagation and the modes of fracture according to cycle number and the relation of cyclic loading to deflection relation and strain relation were investigated by fatigue test. As the result of fatigue test, continuous beam without steel fiber was failed at 60 ~ 70% of The static ultimate strength and it could be concluded that fatigue strength to two million cyclic loading was arround 67.2% by S-N curve. On the other hand, that with steel fiber was failed at 65 ~ 85% of the static ultimate strength and it could be concluded fatigue strength to two million cyclic loading around 71.7%.

The Strength Characteristic of Shotcrete Reinforced with Improved Shape Steel Fiber (형상을 개선한 강섬유보강 숏크리트의 강도특성)

  • Kim, Sang-Hwan;Park, Inn-Joon;Kim, Ji-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.127-136
    • /
    • 2011
  • The laboratory tests were performed to investigate the strength characteristic of shotcrete reinforced with improved shape steel fiber developed in this study. Two different type of tests, the flexural toughness test and the bending strength test, were conducted for analyzing shotcrete strengths using three types of specimens (unreinforced shotcrete, exiting steel fiber reinforced shotcrete, and new concept steel fiber reinforced shotcrete). The results of tests represented the advancement of the strength characteristic of shotcrete reinforced with improved shape steel fiber with respect to that of shotcrete reinforced with existing steel fiber.

Evaluation of Flexural Stiffness Considering Flexural Tensile Strength of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 휨인장강도 특성을 고려한 휨강성 평가)

  • Hong, Geon-Ho;Jung, Seong-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.131-138
    • /
    • 2019
  • Since concrete has a low tensile strength compared to the compressive strength, reinforced concrete flexural members represent easy crack occurance under a small load. In order to overcome this problem, steel fiber reinforced concrete has been developed to compensate the tensile strength and brittleness of members. However, in the design formula of the domestic building code, it is not specified in the design formula reflecting the material characteristics. Therefore, the field application of the steel fiber reinforced concrete have had many restrictions. In this study, a flexural tensile strength model of steel fiber reinforced concrete is proposed by collecting and analyzing the material properties of material test results conducted by various researchers, and verified by the test results of cracking and stiffness evaluation of flexural members based on the proposed model. As a result of this study, the flexural tensile strength model of steel fiber reinforced concrete which can reflect the mixing ratio and aspect ratio of the steel fiber was proposed and the validity of the proposed material model equation was evaluated from the load-deflection relationship in the flexural test of the slab member.

A Study on the Effect of Steel Fiber in Reinforced Concrete Coupling Beam Subjected to Cyclic Loading (반복하중을 받는 철근콘크리트 연결보에서 강섬유의 보강효과에 관한 연구)

  • Kim, Jin-Sung;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.181-190
    • /
    • 2019
  • In this study, four reinforced concrete coupling beams were subjected to cyclic lateral loading test to evaluate the structural performance of coupling beam according to volume fraction of steel fiber. For this purpose, the volume fraction of steel fiber(0%, 1%, 2%) and transverse reinforcement spacing were determined as the main parameter. According to the test results, the maximum strength of D-40C-s100-0 was 1.15, 1.13, 1.05 times higher than D-40C-s300-0, D-40C-s300-1, D-40C-s300-2, respectively. The maximum strength of coupling beams with mitigated rebar details increases as the volume fraction of steel fiber increases. Although steel fiber 2% reinforced specimen(D-40C-s300-2) did not satisfy the amount of transverse reinforcement required for seismic design of coupling beam, the overall performance including to maximum strength, ductility and energy dissipation capacity was similar to the control specimen(D-40C-s100-0). As a result, the use of steel fiber with 2% reinforcement can partially replace the transverse reinforcement in diagonally reinforced concrete coupling beam.

Development of Retrofit Method for Beam Using Steel Plate Reinforced by Fiber Sheet (1) (무소음무진동 보보강공법 개발에 관한 연구(1))

  • Kim WooJae;Choi jong moon;Back Sang Tea;Jung SangJin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.781-784
    • /
    • 2004
  • Method of Steel plate reinforced by fiber sheet is advantageous in the secure loading facility. For this method are a light weight and a high strength, the thickness of steel can be reduced Effects of composite system are depreciated when the thickness of steel is thin. This is the result of the difference of ductility ratio with steel plate. Steel plate reinforced by fiber sheets confirms the ability of transformation. This is the result of the property of steel materials Steel plate reinforced by fiber sheet didn't display an enough performance when theadhesives are epoxy rosin. This is the result of the slide of the surface of stee1. The adhesive ability is varied by the number and span of anchor bolts. There wasn't happening the separation between steel and epoxy. Thus the method used in combination with anchor and epoxy is best excellent. This is the result of the upward of accumulation effects Shearing force is in proportion to the number of bolts. But the ability of shearing force per one bolt is reducing. Thickness of steel plate reinforced by fiber sheet must be designed so that steel is endure before concrete is wreck.

  • PDF

Evaluation of Electromagnetic Pulse Shielding Performance of Amorphous Metallic Fiber Reinforced Cement Composite (비정질 강섬유 보강 시멘트 복합체의 전자파 차폐성능 평가)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Hwang, Eui-Chul;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.50-51
    • /
    • 2018
  • In this study, it evaluate the electromagnetic pulse shielding performance of amorphous metallic fiber reinforced cement composite with other steel fiber reinforced cement composite. Hooked-ended steel fiber, smooth steel fiber and amorphous metallic fiber were reinforced 2.0 vol.% in cement composites respectively. The electromagnetic pulse shielding performance was evaluated by MIL-STD-188-125-1. As a result, shielding performance of amorphous metallic fiber reinforced cement composite was higher than Hooked-ended and smooth steel fiber reinforced cement composites. In addition, the relationship between the electrical conductivity and the electromagnetic pulse shielding performance of the cement composite was confirmed.

  • PDF

Flexural Fatigue Bechavior of Steel Fiber Reinforced Concrete Structures (강섬유보강 콘크리트의 휨 피로거동에 관한 연구)

  • 장동일;채원규;손영현
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.81-87
    • /
    • 1992
  • In this thesis, the fatigue tests were performed on a series of SFRC(steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varying with the steel fiber contents and the steel fiber aspect ratios. The three point loading system is used in the fatigue tests. In tl1ese tests, relations between the repeated loading cycles and the mid-span deflections, number of repeated loadmg cycles when specimen was fractured were observed. On this basis, the mid-span deflections, the elastic strain energy and inelastic strain energy of SFRC were studied. A S - N curve \vas drawn to present the fatigue strength of SFRC beam. From che test results, by increasing the steel fiber content the energy lost on the permanent deformation decreases and the energy spent on crack growth increases. But in case of SFRC with the same steel fiber content the higher the steel fiber aspect ratio is, the less the elastic strain energy is. According to S - N curve drawn by the regression analysis on the fatugue test results, the fatigue strength with 2,000,000 repeated loading cycles in SFRC with the steel fiber content is 1.0% shows about 70% on the first crack static flexural strength.