• Title/Summary/Keyword: steel-fiber

Search Result 1,939, Processing Time 0.028 seconds

Strengthening Efficiency of Ring Type Steel Fibers in Concrete Panels (콘크리트 패널 내 원형 강섬유의 보강 효율성)

  • 조원택;이차돈;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.327-332
    • /
    • 2001
  • It is generally observed that steel fiber reinforced concrete with traditional straight steel fibers overcomes brittle nature of plain concrete by failure mechanisms by fiber pull-out rather than fiber rupture resulting from fiber yielding or concrete fracture at failured surface. Ring type steel fibers in concrete which is confined in concrete matrix and has better orientation, thus, lead to fiber yielding and concrete fracture as well as increase of flexural behavior of concrete more efficiently, Comparative experimental study is performed in order to measure the relative efficiencies of steel fiber reinforced concrete reinforced with two different fibers. It is found that better toughness is obtained from the ring type steel fiber reinforced concrete than from straight steel fiber reinforced concrete under flexural loading.

  • PDF

An Experimental Study on the Mechanical Properties and Rebound Ratios of SFRS with Silica Fume

  • Son, Young-Hyun;Chai, Won-Kyu
    • International Journal of Safety
    • /
    • v.8 no.2
    • /
    • pp.20-25
    • /
    • 2009
  • In this study, an experiment in the field was performed to analyze the mechanical properties and the influence of steel fiber and silica fume on the rebound ratios of shotcrete. The experimental parameters which are the reinforcing methods (steel fiber, wire mesh), steel fiber contents (0.0%, 0.5%, 0.75%, 1.0%), silica fume contents (0.0%, 10.0%), layer thickness (60 mm, 80 mm, 100 mm), and the placing parts (sidewall, shoulder, crown) were chosen. From the mechanical test, it was found that the flexural strength and toughness is significantly improved by the steel fiber and/or silica fume. According to the results for the side wall in this test, the larger the fiber contents are in case of steel fiber reinforced shotcrete, the less the rebound ratios are within the range of 20-35%, compared to the wire mesh reinforced shotcrte. And also, the reduced rebound ratios were very larger in using steel fiber reinforced shotcrete with silica fume content of 10%, and these results are true of the shoulder and the crown. respectively.

Mechanical Behavior of Steel Fiber Reinforced Polymer-impregnated Concrete (강섬유보강 폴리머침투콘크리트의 기계적 성질에 관한 연구)

  • 변근주;송영철;정해성;정기영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.156-161
    • /
    • 1993
  • This paper is to develop steel fiber reinforced polymer-impregnated concrete(SFPIC) by impregnation polymer impregnate into hardened steel fiber reinforced concrete(SFRC). Steel fiber induces ductile behavior and polymer impregnant increase compressive strength. Steel fiber reinforced polymer-impregnated concrete specimens are prepared with fiber contents of 0.0, 1.5, 2.0, 2.5% and tested to obtain uni-axial and bi-axial compression strengths, tensile strength and flexural strength. The strength and mechanical properties of normal concrete, SFRC, SFPIC are compared.

  • PDF

Long-Term Characteristics on Flexural Performance of Steel Fiber Reinforced Concrete Continuous Slab (강섬유보강콘크리트 연속슬래브 휨성능의 장기거동 특성)

  • Hong, Geon-Ho;Jung, Seong-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.163-170
    • /
    • 2019
  • In spite of various advantages, steel fiber reinforced concrete is still limited in its use due to the insufficient research results on the structural performance and design criteria. This study evaluated the long-term behavior of the steel fiber reinforced concrete slabs by long-term loading experiments based on the short-term load bearing capacity of steel fiber reinforced concrete slabs obtained from previous studies. In this study, long-term loading experiments were carried out on Total four 2-span continuous slab specimens were tested for examining the long-term behavior of steel fiber reinforced concrete members. Long-term behavior characteristics of members were evaluated by measuring the long-term deflection, drying shrinkage, the number and width of cracks. Experimental results showed that the instant deflection of the steel fiber reinforced concrete slab is about 50% of the normal reinforced concrete slab. And, it was analyzed that the long-term deflection of the specimen using steel fiber reinforced concrete was about 10~20% lower than that of normal concrete by the long-term deflection over 100 days. In addition, the slab specimen using steel fiber reinforced concrete was evaluated to have just 70% of the number and width of cracks compared with normal concrete specimens.

The influence of magnetic field on the alignment of steel fiber in fresh cementitious composites

  • Li, Hui;Li, Lu;Li, Lin;Zhou, Jian;Mu, Ru;Xu, Mingfeng
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.323-337
    • /
    • 2022
  • This paper proposes a numerical model to simulate the rotational behavior of steel fiber in fresh cement-based materials in the presence of a magnetic field. The results indicate that as the aspect ratio of fiber increases, the required minimum magnetic field intensity to make fiber rotate in viscous fluid increases. The optimal magnetic field intensity is 0.03 T for aligning steel fiber in fresh cement-based materials to ensure that the applying time of the magnetic field can be conducted concurrently with the vibrating process to increase the aligning efficiency. The orientation factor of steel fiber in cement mortar can exceed 0.85 after aligning by 0.03 T of the uniform magnetic field. When the initial angle of the fiber to the magnetic field direction is less than 10°, the magnetic field less than 0.03 T cannot make the fiber overcome the yield stress of fluid to rotate. The coarse aggregate in steel fiber-reinforced concrete is detrimental to the rotation and alignment of the steel fiber. But the orientation factor of ASFRC under the 0.03T of the magnetic field can also exceed 0.8, while the orientation factor of SFRC without magnetic field application is around 0.6.

A Study on the Improvement of Construction Performance of Steel Fiber Reinforced Cementitious Composites (강섬유 보강 시멘트 복합체의 시공성 향상에 관한 연구)

  • 고경택;박정준;김방욱;이종석;김성욱;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.749-754
    • /
    • 2002
  • In this study, it is investigate to influence on tile dispersion of fiber and the flowability of matrix of type and amount of superplasticizer, velocity agent, mineral admixture and steel fiber to improve for construction performance of steel fiber reinforced cementitious composites. As for the test results, it was found that the dispersion of fiber and the flowability of matrix in steel fiber reinforced cementitious composites can improve by using of properly amount and combination of superplasticizer, velocity agent, mineral admixture. Furthermore, It show that the aspect ratio of steel fiber affect the construction performance of fiber reinforced cementitious composites, and the improvement for construction performance is the more effective the smaller aspect ration of steel fiber.

  • PDF

Effect of Volume Fraction and Length of Fiber on the Mechanical Properties of Fiber Reinforced Concrete (섬유보강 콘크리트의 역학적 특성에 대한 섬유 체적비와 길이의 영향)

  • Yang, Keun-Hyeok;O, Seung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.1
    • /
    • pp.43-48
    • /
    • 2008
  • Fifteen concrete specimens were mixed and tested to explore the significance and limitation of appling the polyvinyl alcohol (PVA) fiber and steel fiber with end hook to concrete. Main parameters investigated were volume fraction and length of the fibers. The measured mechanical properties of fiber reinforced concrete are analyzed according to the equivalent fiber amount index explaining the adding amount and length of fibers. Test results showed that compressive strength of fiber reinforced concrete was higher than that of concrete with no fiber by $10{\sim}20%$. The normalized splitting tensile strength and flexural strength of PVA fiber reinforced concrete were similar to those of concrete with no fiber, whereas those of steel fiber reinforced concrete increased with the increase of the equivalent fiber amount index. In particular, much higher ductile behavior was observed in steel fiber reinforced concrete than in PVA reinforced concrete, indicating that the slope of descending branch of load-displacement relationship of steel fiber reinforced concrete decreased with the increase of the volume fraction and length of the fiber.

A fundamental study on the field applicability of the improved shape steel fiber shotcrete (형상을 개선한 강섬유보강 숏크리트의 현장 적용성에 관한 기초적 연구)

  • Kim, Sang-Hwan;Heo, Chung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • This paper presents the fundamental study on the field applicability of new-type steel fiber improved the existing shape. In this study, the theoretical reviews and the laboratory test programs were carried out to evaluate the mechanical characteristic of the new-type of steel fiber. The steel fiber sticking coefficient of new-type steel fiber was estimated from the test results. The laboratory scaled shotcrete rebound tests were also performed to analysis the field applicability of New-type steel fiber shotcrete and the mechanical behaviour of New-type steel fiber shotcrete were compared with that of the existing steel fiber shotcrete. It was found that the strength characteristic of New-type steel fiber shotcrete was increased.

Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture (CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가)

  • Choi, Se-Jin;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2014
  • In order to prevent brittle failure of concrete, steel fiber reinforcement is effective composite material. However ductility of steel fiber reinforced concrete may be limited due to shrinkage caused by large content of cement binder. Chemical prestressing for steel fiber reinforcement in cement matrix can be induced through expansive admixture and this can increase reinforcing effect of steel fiber. In this study, mechanical performances in concrete with CSA (Calcium sulfoaluminate) expansive admixture and steel fiber reinforcement are evaluated. For this work, steel fiber reinforcement of 1 and 2% of volume ratio and CSA expansive admixture of 10% weight ratio of cement are added in concrete. Mechanical and fracture properties are evaluated in concrete with steel fiber reinforcement and CSA expansive admixture. CSA concrete with steel fiber reinforcement shows increase in tensile strength, initial cracking load, and ductility performance like enlarged fracture energy after cracking. With appropriate using expansive admixture and optimum ratio of steel fiber reinforcement, their interactive action can effectively improve brittle behavior in concrete.

Nonlinear analysis and tests of steel-fiber concrete beams in torsion

  • Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2000
  • An analytical approach for the prediction of the behaviour of steel-fiber reinforced concrete beams subjected to torsion is described. The analysis method employs a special stress-strain model with a non-linear post cracking branch for the material behaviour in tension. Predictions of this model for the behaviour of steel-fiber concrete in direct tension are also presented and compared with results from tests conducted for this reason. Further in this work, the validation of the proposed torsional analysis by providing comparisons between experimental curves and analytical predictions, is attempted. For this purpose a series of 10 steel-fiber concrete beams with various cross-sections and steel-fiber volume fractions tested in pure torsion, are reported here. Furthermore, experimental information compiled from works around the world are also used in an attempt to establish the validity of the described approach based on test results of a broad range of studies. From these comparisons it is demonstrated that the proposed analysis describes well the behaviour of steel-fiber concrete in pure torsion even in the case of elements with non-rectangular cross-sections.