• Title/Summary/Keyword: steel-concrete composite joints

Search Result 132, Processing Time 0.029 seconds

Inelastic Behavior of Continuous Precast Composite Slabs (연속 프리캐스트 합성바닥판의 비탄성 거동)

  • Shim Chang-Su;Chung Young Soo;Min Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.447-450
    • /
    • 2005
  • A prefabricated composite hollow slab with perforated I-beams was suggested for the replacement of deteriorated concrete decks or the construction of new composite bridges with long-span slabs. Composite slabs with embedded I-beams have considerably higher stiffness and strength. For the application of prefabricated composite slabs to bridges, joints between slabs should satisfy the requirements of the ultimate limit state and the serviceability limit state. In this paper, three types of the detail for loop joints were selected and their structural performance in terms of strength and crack control was investigated through static tests on continuous composite slabs. A main parameter was the detail of the joint, such as an ordinary loop joint and loop joint with additional reinforcements. Even though there was no connection of the steel beams at the joints, the loop joints showed good performance in terms of strength. In terms of crack control, the loop joint with additional reinforcements showed better performance. In ultimate limit state, the continuous composite slabs showed good moment redistribution and ductility.

  • PDF

Behaviour and design of bolted endplate joints between composite walls and steel beams

  • Li, Dongxu;Uy, Brian;Mo, Jun;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.33-47
    • /
    • 2022
  • This paper presents a finite element model for predicting the monotonic behaviour of bolted endplate joints connecting steel-concrete composite walls and steel beams. The demountable Hollo-bolts are utilised to facilitate the quick installation and dismantling for replacement and reuse. In the developed model, material and geometric nonlinearities were included. The accuracy of the developed model was assessed by comparing the numerical results with previous experimental tests on hollow/composite column-to-steel beam joints that incorporated endplates and Hollo-bolts. In particular, the Hollo-bolts were modelled with the expanded sleeves involved, and different material properties of the Hollo-bolt shank and sleeves were considered based on the information provided by the manufacture. The developed models, therefore, can be applied in the present study to simulate the wall-to-beam joints with similar structural components and characteristics. Based on the validated model, the authors herein compared the behaviour of wall-to-beam joints of two commonly utilised composite walling systems (Case 1: flat steel plates with headed studs; Case 2: lipped channel section with partition plates). Considering the ease of manufacturing, onsite erection and the pertinent costs, composite walling system with flat steel plates and conventional headed studs (Case 1) was the focus of present study. Specifically, additional headed studs were pre-welded inside the front wall plates to enhance the joint performance. On this basis, a series of parametric studies were conducted to assess the influences of five design parameters on the behaviour of bolted endplate wall-to-beam joints. The initial stiffness, plastic moment capacity, as well as the rotational capacity of the composite wall-to-beam joints based on the numerical analysis were further compared with the current design provision.

Probabilistic analysis of a partially-restrained steel-concrete composite frame

  • Amadio, C.
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.35-52
    • /
    • 2008
  • The paper investigates the seismic performance of a Partially-Restrained (PR) steel-concrete composite frame using the probabilistic approach. The analysed frame was tested at the ELSA laboratory of the Joint Research Centre of Ispra (Italy), while the representative beam-to-column composite connections were tested at the Universities of Pisa, Milan and Trento (Italy). The component modelling of both interior and exterior composite joints is described first, including the experimental-numerical validation. The Latin Hypercube method has been used to draw the probabilistic distribution curves of joints, and then the whole PR composite frame has been analysed. Pushover and incremental dynamic analyses have been carried out using the non-linear FE code SAP2000 version 9.1. The fragility and performance curves of the PR composite frame have been determined for four damage limit states.

Component based moment-rotation model of composite beam blind bolted to CFDST column joint

  • Guo, Lei;Wang, Jingfeng;Wang, Wanqian;Ding, Zhaodong
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.547-562
    • /
    • 2021
  • This paper aims to explore the mechanical behavior and moment-rotation model of blind bolted joints between concrete-filled double skin steel tubular columns and steel-concrete composite beams. For this type of joint, the inner tube and sandwiched concrete were additionally identified as basic components compared with CFST blind bolted joint. A modified moment-rotation model for this type of connection was developed, of which the compatibility condition and mechanical equilibrium were employed to determine the internal forces of basic components and neutral axis. Following this, load transfer mechanism among the inner tube, sandwiched concrete and outer tube was discussed to assert the action area of the components. Subsequently, assembly processes of basic coefficients in terms of their stiffness and resistances based on the component method by simplifying them as assemblages of springs in series or in parallel. Finally, an experimental investigation on four substructure joints with CFDST columns for validation purposes was carried out to capture the connection details. The predicted results derived from the mechanical models coincided well with the experimental results. It is demonstrated that the proposed mechanical model is capable of evaluating the complete moment-rotation relationships of blind bolted CFDST column composite connections.

Modelling and experiment of semi rigid joint between composite beam and square CFDST column

  • Guo, Lei;Wang, Jingfeng;Zhang, Meng
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.803-818
    • /
    • 2020
  • Semi-rigid connections with blind bolts could solve the difficulty that traditional high strength bolts were unavailable to splice a steel/composite beam to a closed section column. However, insufficient investigations have focused on the performance of semi-rigid connection to square concrete filled double-skin steel tubular (CFDST) columns. In this paper, a component model was developed to evaluate the mechanical behavior of semi-rigid composite connections to CFDST columns considering the stiffness and strength of column face in compression and column web in shear which were determined by the load transfer mechanism and superstition method. Then, experimental investigations on blind bolted composite joints to square CFDST columns were conducted to validate the accuracy of the component model. Dominant failure modes of the connections were analyzed and this type of joint behaved semi-rigid manner. More importantly, strain responses of CFDST column web and tubes verified that stiffness and strength of column face in compression and column web in shear significantly affected the connection mechanical behavior owing to the hollow part of the cross-section for CFDST column. The experimental and analytical results showed that the CFDST column to steel-concrete composite beam semi-rigid joints could be employed for the assembled structures in high intensity seismic regions.

The Reasonable Concrete-Placing Methods and Sequences of Composite Steel Bridge (강합성형 교량의 합리적인 타설방법과 순서에 관한 연구)

  • Jo, Byung-Wan;Seo, Sug-Gu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.205-212
    • /
    • 1999
  • Recently, unexpected cracks in the concrete deck slab of composite steel bridges have been widely reported at an early age of concrete placing due to the concrete placing sequence and methods. Accordingly, the analytical research was carried out to verify the negative moment at an internal supports due to the several concrete pouring sequence and to determine the reasonable concrete placing method on the deck slab of composite steel bridge. The results show that the conventional concrete-placing method, which pours concrete first on the positive moment regions and then negative regions, leads to the minimum moment at an internal supports. However, the conventional method produces two impractical construction joints on every spans and makes field engineer to pour concrete continuously. In conclusion, this concrete-placing method was verified to be reasonable only when the construction joint was placed at the $\frac{5}{8}l{\sim}\frac{6}{8}l$ location of the middle span.

  • PDF

Research on rotation capacity of the new precast concrete assemble beam-column joints

  • Han, Chun;Li, Qingning;Wang, Xin;Jiang, Weishan;Li, Wei
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.613-625
    • /
    • 2016
  • The joints of the new prefabricated concrete assemble beam-column joints are put together by the hybrid joints of inserting steel under post-tensioned and non-prestressed force and both beams and columns adopt prefabricated components. The low cyclic loading test has been performed on seven test specimens of beam-column joints. Based on the experimental result, the rotation capacity of the joints is studied and the $M-{\theta}$ relation curve is obtained. According to Eurocode 3: Design of steel structures and based on the initial rotational stiffness, the joints are divided into three types; by equivalent bending-resistant stiffness to the precast beam, the equivalent modulus of elasticity $E_e$ is elicited with the superposition method; the beam length is figured out that satisfies the rigid joints and after meeting the requirements of application and safety, the new prefabricated concrete assemble beam-column joints can be regarded as the rigid joints; the design formula adopted by the standard of concrete joint classification is theoretically derived, thereby providing a theoretical basis for the new prefabricated concrete structure.

Initial stiffness and moment capacity assessment of stainless steel composite bolted joints with concrete-filled circular tubular columns

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.681-697
    • /
    • 2019
  • This paper numerically assesses the initial stiffness and moment capacity of stainless steel composite bolted joints with concrete-filled circular tubular (CFCT) columns. By comparing with existing design codes including EN 1993-1-8 and AS/NZS 2327, a modified component method was proposed to better predict the flexural performance of joints involving circular columns and curved endplates. The modification was verified with independent experimental results. A wide range of finite element models were then developed to investigate the elastic deformations of column face in bending which contribute to the corresponding stiffness coefficient. A new design formula defining the stiffness coefficient of circular column face in bending was proposed through regression analysis. Results suggest that a factor for the stiffness coefficient of endplate in bending should be reduced to 0.68, and more contribution of prying forces needs to be considered. The modified component method and proposed formula are able to estimate the structural behaviour with reasonable accuracy. They are expected to be incorporated into the current design provisions as supplementary for beam-to-CFCT column joints.

An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method

  • Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.323-338
    • /
    • 2014
  • In this study a new innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber ultra-high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets. An innovative solution is proposed also for the first time that ensures a satisfactory seismic performance of existing reinforced concrete structures, strengthened by using composite materials. The weak point of the use of such materials in repairing and strengthening of old R/C structures is the area of beam-column joints. According to the proposed solution, the joints can be strengthened with a steel fiber ultra-high-strength concrete jacket, while strengthening of columns can be achieved by using CFRPs. The experimental results showed that the performance of the subassemblage strengthened with the proposed mixed solution was much better than that of the subassemblage retrofitted completely with CFRPs.

Behavior of exterior concrete beam-column joints reinforced with Shape Memory Alloy (SMA) bars

  • Azariani, Hossein Rezaee;Esfahani, M. Reza;Shariatmadar, Hashem
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.83-98
    • /
    • 2018
  • This research was conducted to study the behavior of exterior concrete beam-column joints with reinforced shape memory alloy (SMA) bars tested under cyclic loading. These bars benefit from superelastic behavior and can stand high loads without residual strains. The experimental part of the study, 8 specimens of exterior concrete beam-column joints were made and tested. Two different types of concrete with 30 and 45 MPa were used. Four specimens contained SMA bars and 4 specimens contained steel bars in beam-column joints. Furthermore, different transverse reinforcements were used in beams investigate the effects of concrete confinement. Specimens were tested under cyclic loading. Results show that SMA bars are capable of recentering to their original shape after standing large displacements. Due to the superelastic behavior of SMA bars, cracks at the joint core vanish under cyclic loading. As the cyclic loading increased, bending failure occurred in the beam outside the joint core. In the analytical parts of the study, specimens were simulated using the SeismoStruct software. Experimental and analytical results showed a satisfactory correlation. Plastic hinge length at the beam joint for specimens with SMA and steel bars was calculated by empirical equations, experimental and analytical results. It was shown that Paulay's and Priestley's equations are appropriate for concrete beam-column joints in both types of bars.