• Title/Summary/Keyword: steel-CFRP

Search Result 317, Processing Time 0.024 seconds

Evaluation of Shear Behavior of Beams Strengthened in Shear with Carbon Fiber Reinforced Polymer with Mohr's Circle (모어써클을 활용한 탄소섬유 전단보강된 보의 전단거동 평가)

  • Kim, Yun-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.527-534
    • /
    • 2016
  • Beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP) which had different transverse reinforcement ratio were tested to evaluate shear contribution in the CFRP and to analyze shear behavior of each test with Mohr's circle. Strain in the CFRP should be evaluated to estimate the shear contribution in the CFRP which is brittle material. Test results were compared each other based on the Mohr's circle which can correlate shear strain with both principal tensile strain and crack angle. With low transverse steel ratio, shear strengthening with CFRP not only increases the shear strength effectively but also minimizes the loss in shear contribution of concrete by limiting the development of crack. With high transverse steel ratio, the effect on shear strengthening with CFRP is not as much as the beam with low ratio. Therefore, the shear contribution in the CFRP should be evaluated based on the strain compatibility which can consider the interaction between steel and CFRP when determining the shear capacity of a strengthened member.

Prediction of premature separation of bonded CFRP plates from strengthened steel beams using a fracture criterion

  • Lenwari, A.;Thepchatri, T.;Watanabe, E.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.565-574
    • /
    • 2002
  • This paper presents a method for predicting premature separation of carbon fiber reinforced plastic (CFRP) plates from strengthened steel beams. The fracture criterion based on material-induced singularity is formulated in terms of a singular intensity factor. Static test on double strap joints was selected to provide the critical stress intensity factor in the criterion because good degree of accuracy and consistency of experimental data can be expected compared with the unsymmetrically loaded single lap joints. The debond/separation loads of steel beams with different CFRP lengths were measured and compared with those predicted from the criterion. Good agreement between the test results and the prediction was found.

An Experimental Study on the Performance of Bond-Type Anchorage Systems with Various Dimensions of Steel Mold (CFRP 긴장재용 부착형 정착 장치의 강관 몰드 제원에 따른 정착 성능 실험 연구)

  • Jung, Woo-Tai;Park, Young-Hwan;Park, Jong-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • This paper contains the experimental performance evaluation results of bond-type anchorage systems with the CFRP(carbon fiber reinforced polymer) tendon. The preliminary tests were performed to find the appropriate filling materials in the steel molds. A total of five materials including epoxy or cement mortar have been used as fillers in the steel molds. Results of the preliminary tests showed that specimen filled with non-shrinkage mortar showed maximum tensile strength. Based on the finding, the non-shrinkage mortar was selected as filler for anchoring CFRP tendons. Additional tests were performed as a parametric study to select proper size of steel molds such as external diameter, thickness, and length. The proper size of steel molds with non-shrinkage mortar was selected based on the test results, which gave stable tensile performance.

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion Between CFRP and A516Gr.55 Carbon Steel

  • Hur, Seung Young;Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.129-137
    • /
    • 2019
  • CFRP (Carbon Fiber Reinforced Plastics) is composed of carbon fiber and plastic resin, and is approximately 20 - 50% lighter than metallic materials. CFRP has a low density, higher specific stiffness, specific strength, and high corrosion resistance. Because of these excellent properties, which meet various regulation conditions needed in the industrial fields, CFRP has been widely used in many industries including aviation and ship building. However, CFRP reveals water absorption in water immersion or high humidity environments, and water absorption occurs in an epoxy not carbon fiber, and can be facilitated by higher temperature. Since these properties can induce volume expansion inside CFRP and change the internal stress state and degrade the chemical bond between the fiber and the matrix, the mechanical properties including bond strength may be lowered. This study focused on the effects of NaCl concentration (0.01 - 1% NaCl) and solution temperature ($30-75^{\circ}C$) on the galvanic corrosion between CFRP and A516Gr.55 carbon steel. When NaCl concentration increases 10 times, corrosion rate of a specimen was not affected, but that of galvanic coupled carbon steel increased by 46.9% average. However, when solution temperature increases $10^{\circ}C$, average corrosion rate increased approximately 22%, regardless of single or galvanic coupled specimen.

Ultimate Stress of Prestressing CFRP Tendons in PSC Beams Strengthened by External CFRP Prestressing (외부 CFRP 프리스트레싱으로 보강된 PSC 보에서 CFRP 텐던의 극한응력)

  • Park, Sang-Yeol;Kim, Chang-Hoon;Hong, Seong-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.735-744
    • /
    • 2007
  • This study deals with literature review, developing a predicting equation for the ultimate stress of prestressing (PS) CFRP, and experimental test with the parameters affecting the ultimate stress of prestressing CFRF in prestressed concrete beams strengthened by external prestressing. The ACI (American Concrete Institute) predicting equation for the ultimate stress of unbonded prestressing CFRP is analyzed to develop a new integrated predicting equation. The proposed predicting equation takes rationally the effect of internal PS steel into consideration as a function of prestressing tendon depth to neutral depth ratio. In the experimental study, prestressed concrete beams strengthened using external prestressing CFRP are tested with the test parameters having a large effect on the ultimate stress of prestressing CFRP. The test parameters includes infernal prestressing steel and external prestressing CFRP tendon reinforcement ratios, and span to depth ratio. The test results are analyzed to confirm the rationality and applicability of the proposed equation for predicting the ultimate stress of external prestressing CFRP.

Reliability Assessment of Reinforced Concrete Beams Strengthened by CFRP Laminates (CFRP 적층판으로 보강된 철근콘크리트보의 신뢰성평가)

  • 조효남;최영민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.160-166
    • /
    • 1994
  • In general, the problems of strengthening and repairing of deteriorated or damaged reinforced concrete members are usually worked out in situ by externally bounding steel plates using epoxy resins, which has been recognized to be one of effective and convenient methods. But the disadvantages of strengthening/repairing concrete members with externally bonded steel plates include ; (a) deterioration of the bond at the steel-concrete interface caused by the corrosion of steel ; (b) difficulty in manipulating the plate at the construction site ; (c) improper formation of joints, due to the limited delivery lengths of the steel plates ; and etc. Therefore these difficulties eventually have led to the concept of replacing the steel plates by fiber-reinforced composite sheets which are characterized by their light weight, extremely high stiffness, excellent fatigue properties, and outstanding corrosion resistance. In the paper, for the reliability assessment of reinforced concrete beams externally strengthened by carbon fiber plastic(CFRP) laminates, an attempt is made to suggest a limit state model based on the strain compatibility method and the concept of fracture mechanics. And the reliability of the proposed models is evaluated by using the AFOSM method. The load carrying capacity of the deteriorated and/or damaged RC beams is considerably increased. Thus, it may be stated that the post-strengthening of concrete beams with externally bonded CFRP materials may be one of very effective way of increasing the load carrying capacity and stiffeness characteristics of existing structures.

  • PDF

Experimental and numerical study about seismic retrofitting of corrosion-damaged reinforced concrete columns of bridge using combination of FRP wrapping and steel profiles

  • Afshin, Hassan;Shirazi, Mohammad R. Nouri;Abedi, Karim
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.231-251
    • /
    • 2019
  • In the present study, a numerical and experimental investigation has been carried out on the seismic behavior of RC columns of a bridge which damaged under corrosive environments and retrofitted by various techniques including combined application of CFRP sheets and steel profiles. A novel hybrid retrofitting procedure, including the application of inner steel profiles and outer peripheral CFRP sheets, has been proposed for strengthening purpose. Seven large-scale RC columns of a Girder Bridge have been tested in the laboratory under the influence of simultaneous application of constant axial load and the lateral cyclic displacements. Having verified the finite element modeling, using ABAQUS software, the effects of important parameters such as the corrosion percentage of steel rebars and the number of CFRP layers have been evaluated. Based on the results, retrofitting of RC columns of the bridge with the proposed technique was effective in improving some measures of structural performance such as lateral strength degradation and higher energy absorption capability. However, the displacement ductility was not considerably improved whereas the elastic stiffness of the specimens has been increased.

Flexural response of steel beams strengthened by fibre-reinforced plastic plate and fire retardant coating at elevated temperatures

  • Ahmed, Alim Al Ayub;Kharnoob, Majid M.;Akhmadeev, Ravil;Sevbitov, Andrei;Jalil, Abduladheem Turki;Kadhim, Mustafa M.;Hansh, Zahra J.;Mustafa, Yasser Fakri;Akhmadullina, Irina
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.551-561
    • /
    • 2022
  • In this paper, the effect of fire conditions according to ISO 834 standard on the behavior of carbon fibre-reinforced plastic (CFRP) reinforced steel beams coated with gypsum-based mortar has been investigated numerically. To study the efficiency of these beams, 3D coupled temperature-displacement finite element analyzes have been conducted. Mechanical and thermal characteristics of three different parts of composite beams, i.e., steel, CFRP plate, and fireproof coating, were considered as a function of temperature. The interaction between steel and CFRP plate has been simulated employing the adhesion model. The effect of temperature, CFRP plate reinforcement, and the fireproof coating thickness on the deformation of the beams have been analyzed. The results showed that within the first 120 min of fire exposure, increasing the thickness of the fireproof coating from 1 mm to 10 mm reduced the maximum temperature of the outer surface of the steel beam from 380℃ to 270℃. This increase in the thickness of the fireproof layer decreased the rate of growth in the temperature of the steel beam by approximately 30%. Besides excellent thermal resistance and gypsum-based mortar, the studied fireproof coating method could provide better fire resistance for steel structures and thus can be applied to building materials.

Strengthening Effect of CFRP on the R/C Rahmen Bridge (R/C 라멘교에 적용된 CFRP의 보강효과)

  • 심종성;정영수;윤선원;김규선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.328-333
    • /
    • 1996
  • Concrete can be defective for several reasons, including an inadequate design, material selection of workmanship, failure to appreciate the hazards associated with prevailing enviromental conditions. Concrete can also deteriorate or be damaged in use. Thus, it is necessary to evaluate the safety of existing concrete strucutres. On the basis of these reasons, they must be performed for repair or rehabilitation. Presently, strengthening methods of R/C structure used in Korea, are an enlargement of concrete member, strengthening with steel plate or CFRP on the R/C structure. It has been widely estabilished that strengthening effect of CFRP is superior to steel plate in terms of it's lighter unit weight and higher tensile strength. But there are no construction results of CFRP on the civil R/C structure in Korea. The strengthening design technique with CFRP, it's const겨ction, and it's strengthening effect for deteriorated R/C rahmen bridge is introduced in this paper.

  • PDF

Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region

  • El-Shihy, A.M.;Fawzy, H.M.;Mustafa, S.A.;El-Zohairy, A.A.
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.281-295
    • /
    • 2010
  • An experimental and a non linear finite element investigation on the behavior of steel-concrete composite beams stiffened in hogging moment region with Carbon Fiber Reinforced Plastics (CFRP) sheets is presented in this paper. A total of five specimens were tested under two-point loads. Three of the composite beams included concrete slab while the other two beams had composite slabs. The stiffening was achieved by attaching CFRP sheets to the concrete surface at the position of negative bending moment. The suggested CFRP sheets arrangement enhanced the overall beam behavior and increased the composite beam capacity. Valuable parametric study was conducted using a three dimensional finite element model using ANSYS program. Both geometrical and material nonlinearity were included. The studied parameters included CFRP sheet arrangement, concrete strength and degree of shear connection.