• 제목/요약/키워드: steel work

검색결과 1,554건 처리시간 0.022초

세라믹 종류, 두께 및 소성온도에 따른 식물개체제어형 세라믹 자동점적관수시스템의 점적성능 (Trickling Performance of Individual Watering System with Variety, Thickness and Firing Temperature of Ceramic)

  • 양원모
    • 생물환경조절학회지
    • /
    • 제8권4호
    • /
    • pp.257-264
    • /
    • 1999
  • 세라믹의 종류와 두께 그리고 소성온도를 달리하여 제작한 세라믹 자동점적센서의 점적성능을 비교 분석하였다. 자체제작 세라믹센서에 가장 많이 함유된 조성성분은 $SiO_2$로 54.17~71.62wt.%였으며 다음이 A1$_2$O로 15.42~33.79 wt.%였다. 두 성분의 합계는 백자토 92.34 wt.%, 옹기토 89.18 wt.%, 미립분청토 88.17 wt.%, 세립분청토 87.96 wt.%, 대조구(시판수입제품) 87.04 wt.%였다. $SiO_2$:A1$_2$O의 비율은 백자토 73.2:26.8, 옹기토 80.2:19.8, 미립분청토 68.9:31.1, 세립분청토 61.6:38.4, 재조구 82.3:17.7이었다 기타 Fe$_2$ $O_3$, CaO, MgO, $Na_2$O, $K_2$O, Ti $O_2$, P$_2$ $O_{5}$ 등이 10wt.%내외 함유되어 있었다. 공극율은 세립분청토에서 가장 높았고 백자토, 옹기토 순이었으며 소성온도가 높을수록 두께가 두꺼울수록 공극율이 높았다. 두께 2.5mm로 성형한 세라믹의 점토종류에 따른 공극율은 세립분청토 37.47%, 세립분청토와 옹기토의 혼합토 34.82%, 백자토 34.71%, 옹기토 32.5% 순이었다. 세라믹의 점토종류, 소성온도에 관계없이 자동점적이 가능하였으나 점적센서의 반응주기와 점적량의 집중도는 차이가 있었으며, 세라믹의 두께나 상부 플라스틱 개폐장치의 탄력성에 따라서도 점적패턴과 점적량의 집중도에 큰 차이가 있었다. 세립분청토나 백자토에서는 점적지속시간이 짧았으며 백자토의 경우 점적량의 증가가 급격하지만 감소는 서서히 이루어졌다. 또한 세라믹의 두께가 두꺼울수록 점적지속시간이 짧았으며 점적량의 증가는 급격하였고 감소는 완만하였다. 그러나 두께 1mm로 얇은 경우는 백자토를 제외하고는 정상적인 급액이 이루어지지 못하였다. 세라믹 센서를 50$0^{\circ}C$에서 소성한 경우 점적지속시간이나 단위시간당 점적량이 불안정하였으며 $600^{\circ}C$$700^{\circ}C$에서는 비교적 안정된 양상을 보였으나 점적지속시간이 길어졌으며 80$0^{\circ}C$ 또는 90$0^{\circ}C$에서 소성한 경우는 점적지속시간이 짧은 반면 단위시간당 점적량이 커지면서 점적의 개시와 종료가 뚜렷하였다.

  • PDF

주문생산 기업을 위한 기계학습 기반 총생산시간 예측 기법 (A Machine Learning-based Total Production Time Prediction Method for Customized-Manufacturing Companies)

  • 박도명;최형림;박병권
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.177-190
    • /
    • 2021
  • 4차 산업혁명 기술의 발전으로 사람이 처리하지 못하는 부분을 기계학습 등 인공지능 기법을 활용하여 개선해 보려는 노력이 확대되고 있다. 주문형 생산 기업에서도 주문에 대한 총생산시간을 예측하여 납기 지연 등의 기업 리스크를 줄이고자 하나 주문마다 총생산시간이 모두 달라 이를 예측하는데, 어려움을 겪고 있다. 주문 처리량 증대, 주문 총비용 절감을 위해 효율성이 가장 낮은 영역을 찾아 그 영역을 강화하는 TOC(Theory of constraints) 이론이 개발되었으나 총생산시간 예측은 제시하지 못하였다. 주문생산은 고객의 다양한 요구로 인해 주문마다 그 특성이 모두 다르므로 개별적인 주문의 총생산시간을 사후에 측정할 수는 있으나 사전 예측을 하기는 어렵다. 기존 주문의 이미 측정된 총생산시간도 모두 달라 표준 시간으로 활용할 수 없는 한계성이 있다. 이에 따라 경험이 많은 관리자는 시스템의 이용보다는 감에 의존하고 있고, 경험이 부족한 관리자는 간단한 관리지표(예, 원재료가 파이프이면 총생산시간 60일, 철판이면 총생산시간 90일 등)를 사용하고 있다. 불완전한 감이나 지표를 기초로 하여 작업 지시를 너무 빨리하면 정체가 발생하여 생산성이 저하되고, 너무 늦게 하면 긴급 처리로 인해 생산비용이 증가하거나 납기를 지키지 못하는 경우가 발생한다. 납기를 지키지 못하면 지체상금을 배상해야 하거나 영업, 수금 등의 부문에 악영향을 미친다. 본 연구에서는 이러한 문제를 해결하기 위하여 주문생산시스템을 운영하는 기업의 신규 주문 총생산시간을 추정하는 기계학습 모델을 찾고자 한다. 기계학습에 활용된 자료는 수주, 생산, 공정 실적을 사용한다. 그리고 총생산시간의 추정에 가장 적합한 알고리즘으로 OLS, GLM Gamma, Extra Trees, Random Forest 알고리즘 등을 비교 분석하고 그 결과를 제시하고자 한다.

정미기의 능률에 미치는 기계적 요인및 작동조건에 관한 연구 (Mechanical and Operational Factors Affecting the Efficiency of Rice Polishing Machines)

  • 노상하
    • Journal of Biosystems Engineering
    • /
    • 제1권1호
    • /
    • pp.15-15
    • /
    • 1976
  • In analyzing the operational characteristics of a rice whitening machine, the internal radial pressure of the machine was measured using strain gage equipment. Changes in cylinder and feed screw configurations, screen type, cylinder speed and counter-pressure levels were examined to determine their impact on the quality and quantity of milled rice and the performance of the machine. The results are summarized as follows: 1. The internal radial pressure in the whitening chamber varied with the surface condition of the grain being processed. During the first or second pass through the machine, pressure was relatively low, reached a maximum after two to three passes with combinations I and II, three to six with combination III and then began to fall. 2. The pitch of the feed screw and the size of the feed gate opening which determine the rate of entry of grain into the whitening chamber, appeared to be the most important factor aff-::cting the degree of radial pressure, quality and quantity of milled rice and the efficiency of the machine. Using a feed screw with a wide pitch (4.8cm), radial pressure was relatively high and head rice recovery ratio \vere quite low. In this case capacity and machine effic?iency were much higher than obtained when using a feed screw with a narrow pitch (2.3cm). Very significant responses in radial pressure, head rice recovery rates and machine capacity were observed with changes in cylinder speed and counter-pressure levels when using the wide pitch feed screw. 3. The characteristics of the screen which surrounds the whitening chamber had an important effect on whitening efficiency. The existence of small protuberances on the original screen resulted in significant increases in both machine capacity and efficiency but without a significant decrease in head rice recovery or development of excessive radial pressure. Further work is required to determine the effects of screen surface conditions and the shape of the cylinderical steel roller on the rate of bran removal, machine efficiency and recovery rates. The size of the slotted perforations 0:1 the screen affects total milled rice recovery. The opening size on the original screen was fabricated to accommodate the round shape of Japonica rice varieties but was not suitable for the more slender Indica type. Milling Indica varieties with this screen resulted in a reduction in total milled rice recovery. 4. An increase in cylinder speed from 380 to 820 rpm produced a positive effect on head rice recovery for all machine combinations at every level of counter-pressure used in the tests. Head rice recovery was considerably lower at 380rpm using a wide screw pitch when compared to the results obtained at speeds from 600 to 820 r.p.m. The effects of cylinder speed On radial pressure, capacity and machine efficiency showed contrasting results, depending on the width of the feed screw pitch. With a narrow feed screw pitch (2.3cm), a direct proportional relationship was observed bet?ween cylinder speed and both radial pressure and machine efficiency. In contrast, using a 4.8 centimeter pitch feed roller produced a series of inverse relationships between the above variables. Based on the results of this study it is recommended when milling Indica type long grain rice varieties that the cylinder speed of the original machine be increased from 500-600 rmp up to a minimum of 800 rpm to obtain a greater abrasive effect between the grain and the screen. The pitch of the feed screw should be also reduced to decr?ease the level of internal radial pressure and to obtain higher machine efficiency and increased quality of milled rice with increased cylinder speeds. Further study on the interaction between cylinder speed and feed screw pitch is recommended. 5. An increase in the counter pressure level produced a negative effect On the head rice recovery with an increase in radial pressure, capacity, and machine efficiency over all combinations and at every level of cylinder speed. 6. Head rice recovery rates were conditioned primarily by the pressure inside the whitening chamber. According to the empirical cha racteristics curve developed in this study, the relationships of head rice recovery ($Y_h$) and machine capacity ($Y_c$/TEX>) to internal radial pressure ($X_p$) followed an inverse quadratic function and a linear function respectively: $$Y_h^\Delta=\frac{1}{{1.4383-0.2951X_p^\ast+0.1425X_p^{\ast\ast}}^2} , (R^2=0.98)$$$$Y_c^\Delta=-305.83+374.37X_p^{\ast\ast}, (R^2=0.88)$$The correlation between capacity and power consumption per unit of brown rice expressed in the following exponential function: $$Y_c^\Delta=1.63Y_c^{-0.7786^\{\ast\ast}, (R^2=0.94)$$These relationships indicate that when radial pressure increases above a certain range (1. 6 to 2.0 kg/$cm^2$ based On the results of the experiment) head ricerecovery decrea?ses in a quadratic relation with a inear increase in capacity but without any decrease in power consump tion per unit of brown rice. On the other hand, if radial pressure is below the range shown above, power consumption increases dramatically with a lin?ear decrease in capacity but without significant increases in head rice recovery. During the operation of a given whitening machine, the optimum radial pressure range or the correct capacity range should be selected by controlling the feed rate and/or counter-pressure keeping in mind the condition of the grain, particulary the hardness. It was observed that the total number of passes is related to radial pessure level, feed rate and counter-pressure level. The higher theradial pressure the fewer num?ber of pass required but with decreased head rice recovery. In particular, when using high feed rates, the total number of passes should be increased to more than three by reducing the counter-pressure level to avoid decreaseases in head rice recovery (less than 65 percent head rice recovery on the basis of brown rice) at every cylinder speed. 7. A rapid rise in grain temperature seemed to have a close relationship with the pressure generated inside the whitening chamber and, subsequently with head rice reco?very rates. The higher the rate of increase, the lower were the resulting head rice recoveries.

정미기의 능률에 미치는 기계적 요인및 작동조건에 관한 연구 (Mechanical and Operational Factors Affecting the Efficiency of Rice Polishing Machines)

  • 노상하;최재갑
    • Journal of Biosystems Engineering
    • /
    • 제1권1호
    • /
    • pp.17-48
    • /
    • 1976
  • In analyzing the operational characteristics of a rice whitening machine, the internal radial pressure of the machine was measured using strain gage equipment. Changes in cylinder and feed screw configurations, screen type, cylinder speed and counter-pressure levels were examined to determine their impact on the quality and quantity of milled rice and the performance of the machine. The results are summarized as follows: 1. The internal radial pressure in the whitening chamber varied with the surface condition of the grain being processed. During the first or second pass through the machine, pressure was relatively low, reached a maximum after two to three passes with combinations I and II, three to six with combination III and then began to fall. 2. The pitch of the feed screw and the size of the feed gate opening which determine the rate of entry of grain into the whitening chamber, appeared to be the most important factor aff-::cting the degree of radial pressure, quality and quantity of milled rice and the efficiency of the machine. Using a feed screw with a wide pitch (4.8cm), radial pressure was relatively high and head rice recovery ratio \vere quite low. In this case capacity and machine effic\ulcorneriency were much higher than obtained when using a feed screw with a narrow pitch (2.3cm). Very significant responses in radial pressure, head rice recovery rates and machine capacity were observed with changes in cylinder speed and counter-pressure levels when using the wide pitch feed screw. 3. The characteristics of the screen which surrounds the whitening chamber had an important effect on whitening efficiency. The existence of small protuberances on the original screen resulted in significant increases in both machine capacity and efficiency but without a significant decrease in head rice recovery or development of excessive radial pressure. Further work is required to determine the effects of screen surface conditions and the shape of the cylinderical steel roller on the rate of bran removal, machine efficiency and recovery rates. The size of the slotted perforations 0:1 the screen affects total milled rice recovery. The opening size on the original screen was fabricated to accommodate the round shape of Japonica rice varieties but was not suitable for the more slender Indica type. Milling Indica varieties with this screen resulted in a reduction in total milled rice recovery. 4. An increase in cylinder speed from 380 to 820 rpm produced a positive effect on head rice recovery for all machine combinations at every level of counter-pressure used in the tests. Head rice recovery was considerably lower at 380rpm using a wide screw pitch when compared to the results obtained at speeds from 600 to 820 r.p.m. The effects of cylinder speed On radial pressure, capacity and machine efficiency showed contrasting results, depending on the width of the feed screw pitch. With a narrow feed screw pitch (2.3cm), a direct proportional relationship was observed bet\ulcornerween cylinder speed and both radial pressure and machine efficiency. In contrast, using a 4.8 centimeter pitch feed roller produced a series of inverse relationships between the above variables. Based on the results of this study it is recommended when milling Indica type long grain rice varieties that the cylinder speed of the original machine be increased from 500-600 rmp up to a minimum of 800 rpm to obtain a greater abrasive effect between the grain and the screen. The pitch of the feed screw should be also reduced to decr\ulcornerease the level of internal radial pressure and to obtain higher machine efficiency and increased quality of milled rice with increased cylinder speeds. Further study on the interaction between cylinder speed and feed screw pitch is recommended. 5. An increase in the counter pressure level produced a negative effect On the head rice recovery with an increase in radial pressure, capacity, and machine efficiency over all combinations and at every level of cylinder speed. 6. Head rice recovery rates were conditioned primarily by the pressure inside the whitening chamber. According to the empirical cha racteristics curve developed in this study, the relationships of head rice recovery ($Y_h$) and machine capacity ($Y_c$/TEX>) to internal radial pressure ($X_p$) followed an inverse quadratic function and a linear function respectively: $$Y_h^\Delta=\frac{1}{{1.4383-0.2951X_p^\ast+0.1425X_p^{\ast\ast}}^2} , (R^2=0.98)$$ $$Y_c^\Delta=-305.83+374.37X_p^{\ast\ast}, (R^2=0.88)$$ The correlation between capacity and power consumption per unit of brown rice expressed in the following exponential function: $$Y_c^\Delta=1.63Y_c^{-0.7786^\{\ast\ast}, (R^2=0.94)$$ These relationships indicate that when radial pressure increases above a certain range (1. 6 to 2.0 kg/$cm^2$ based On the results of the experiment) head ricerecovery decrea\ulcornerses in a quadratic relation with a inear increase in capacity but without any decrease in power consump tion per unit of brown rice. On the other hand, if radial pressure is below the range shown above, power consumption increases dramatically with a lin\ulcornerear decrease in capacity but without significant increases in head rice recovery. During the operation of a given whitening machine, the optimum radial pressure range or the correct capacity range should be selected by controlling the feed rate and/or counter-pressure keeping in mind the condition of the grain, particulary the hardness. It was observed that the total number of passes is related to radial pessure level, feed rate and counter-pressure level. The higher theradial pressure the fewer num\ulcornerber of pass required but with decreased head rice recovery. In particular, when using high feed rates, the total number of passes should be increased to more than three by reducing the counter-pressure level to avoid decreaseases in head rice recovery (less than 65 percent head rice recovery on the basis of brown rice) at every cylinder speed. 7. A rapid rise in grain temperature seemed to have a close relationship with the pressure generated inside the whitening chamber and, subsequently with head rice reco\ulcornervery rates. The higher the rate of increase, the lower were the resulting head rice recoveries.

  • PDF