• Title/Summary/Keyword: steel tubular transmission tower

Search Result 9, Processing Time 0.03 seconds

Wind tunnel tests on wind loads acting on steel tubular transmission towers under skewed wind

  • YANG, Fengli;NIU, Huawei
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.93-108
    • /
    • 2022
  • Steel tubular towers are commonly used in UHV and long crossing transmission lines. By considering effects of the model scale, the solidity ratio and the ratio of the mean width to the mean height, wind tunnel tests under different wind speeds on twenty tubular steel tower body models and twenty-six tubular steel cross-arm models were completed. Drag coefficients and shielding factors of the experimental tower body models and cross-arm models in wind directional axis for typical skewed angles were obtained. The influence of the lift forces on the skewed wind load factors of tubular steel tower bodies was evaluated. The skewed wind load factors, the wind load distribution factors in transversal and longitudinal direction were calculated for the tubular tower body models and cross-arm models, respectively. Fitting expressions for the skewed wind load factors of tubular steel bodies and cross-arms were determined through nonlinear fitting analysis. Parameters for skewed wind loads determined by wind tunnel tests were compared with the regulations in applicable standards. Suggestions on the drag coefficients, the skewed wind load factors and the wind load distribution factors were proposed for tubular steel transmission towers.

Development of Compact Towers with Insulation Arm in Korea (절연암 적용 컴팩트 철탑 개발)

  • Lee, Won-kyo;Yun, Cheol-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.63-66
    • /
    • 2018
  • Lattice towers and tubular steel poles have been commonly used for electrical power transmission in Korea as well as the other countries. They are durable, structurally stable, simple and can easily be constructed in limited spaces. However, residents are opposed to construct transmission lattice towers in their areas because they are not visually attractive, and electrical field occur at the transmission lines. Underground transmissions have been used instead of the traditional towers to resolve these problems, however they are not cost effective to construct and run. Therefore, we have developed compact towers that are more attractive, well blend into the surrounding environment and much more economical than underground transmissions. This paper shows the design of a compact towers with insulation arm, in order to reduce the height of tower and the separation between phases. The compact tower can be installed in a narrow right-of-way. Insulation arms are easily applied to lattice and steel tubular towers instead of steel arms. Compact towers with insulation arm are also considered as a solution to have public acceptance or to create a familiar atmosphere among towers and people. Compact tower compared with a conventional tower, insulation arms reduces the width and height of the tower by 20% and 15% respectively.

Development of Eco-friendly Electric Transmission Towers in KEPCO (환경조화형 철탑 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.135-140
    • /
    • 2019
  • Lattice towers and tubular steel poles have been commonly used for electrical power transmission in Korea. They are durable, structurally stable, simple and can easily be constructed in limited spaces. However, residents are opposed to construct transmission lattice towers in their areas because they are not visually attractive, and electrical field occur at the transmission lines. Underground transmissions have been used instead of the traditional towers to resolve these problems, however they are not cost effective to construct and run. Therefore, we have developed eco-friendly towers that are more attractive, well blending into the surrounding environment, and much more economical than underground transmissions. There are four categories of the eco-friendly electric transmission towers about design aspects. Firstly, there is decoration type such as tree tower and ensemble tower. Tree tower looks like actual trees with leaves and branches so it blends into surroundings. Ensemble towers were designed after pair of crane birds. Those towers have decoration features and art works. Structural examination and manufacturing this type would be very similar to the conventional transmission towers. Secondly, there is arm design type such as traditional tower. Design features are added to the existing towers. As partial design can be adoptable on these types, it can easily meet height regulations and attach to conventional lattice towers and tubular steel poles. Also, these towers are more economical than others. Third category is multipurpose type such as Sail Tower. These towers have simple pole or tubular structure with features which can be used as information message board, public relations and much more. This type will face greater wind pressure because of the area of the board, also visibility must take into consideration. Lastly, there is moulding type such as arc pylon. It is different shape to the conventional towers - lattice towers and tubular steel poles. Dramatic design changes have been adapted - from a hard and static tower to a soft and curved tower. These towers will well stand out in the field. However, structural examination and manufacturing this type would be difficult and costly. Also certain towers of this type would require scaffolding or false work to construct, which will result in limitations of the construction area. This paper shows KEPCO 154 kV Sail tower in detail. KEPCO 154 kV Sail tower that is included in fabrication of sample tower and tower testing has developed and the results are presented in this paper. We hope that sail tower is also considered as a solution to have public acceptance or to create a familiar atmosphere among towers and people in coastal area.

765kV Steel Tubular Tower Design On Considering Stringing Load (가선작업 하중을 고려한 765kV 강관철탑 설계)

  • Jung, Tay-Ho;Kim, Shin-Chul;Yoon, Young-Soon;Shin, Tae-Woo;Lee, An-Keun;Kim, Kwang-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.935-937
    • /
    • 1998
  • The stringing load was added to tower design that consider the active load in 765kV transmission line construction. The nominal auxiliary members of steell tubular tower arm were altered into stress members by means of three dimensional design analysis method. 765kV transmission line construction also use self-standing tower that does not install temporary wire which support the section tower placed between drum field and engine field when stringing process.

  • PDF

TAPERED TUBULAR STEEL POLE FOR CABLE HEAD (케이블헤드 설치용 관형지지물)

  • Park, Tae-Dong;Kwon, Hyeog-Mun
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.158-160
    • /
    • 1997
  • WHEN IT IS REQUIRED TO CONNECT OVERHEAD TRANSMISSION LINE WITH UNDERGROUND CABLE, PREVALENT METHOD WAS TO USE CABLE HEAD TYPICALLY MADE OF LATTICE STEEL STRUCTURE. BUT IN VIEW OF THE INCREASING DEMAND THAT STEEL STRUCTURE INSTALLED IN URBAN AREA AND/OR RESIDENTIAL AREA NEED TO MATCH WITH ENVIRONMENTAL SURROUNDINGS, THE UNSHAPELY LARGE-SIZED LATTICE STEEL STRUCTURE CAN NOT BE A PROPER ONE BECAUSE THAT IT IS NOT WELCOMED BY THE RESIDENTS AND ACCORDINGLY ITS INSTALLATION TENDS TO CONFRONT WITH CIVIL PETITION. AS AN ALTERNATIVE METHOD TO SETTLE AFOREMENTIONED UNFAVOURABLE SITUATION WE MAY BE UNDER, WE AR INTENDING TO DEVELOP THE CABLE HEAD MADE OF TAPERED TUBULAR STEEL POLE AND TO PUT IT TO PRACTICAL USE. THE ADVANTAGE WE CAN TAKE OF THE TAPERED TUBULAR STEEL POLE IS THAT IT CAN BE INSTALLED IN A VERY LIMITED SPACE MAXIMIZING THE UTILITY VALUE OF THE LAND AND THAT ITS SMART SHAPE WITH COLOUR COATING IN CONSIDERATION OF AESTHETIC AESTHETIC CAN BE IN GOOD HARMONY WITH THE SURROUNDINGS.

  • PDF

ML-based prediction method for estimating vortex-induced vibration amplitude of steel tubes in tubular transmission towers

  • Jiahong Li;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.27-40
    • /
    • 2024
  • The prediction of VIV amplitude is essential for the design and fatigue life estimation of steel tubes in tubular transmission towers. Limited to costly and time-consuming traditional experimental and computational fluid dynamics (CFD) methods, a machine learning (ML)-based method is proposed to efficiently predict the VIV amplitude of steel tubes in transmission towers. Firstly, by introducing the first-order mode shape to the two-dimensional CFD method, a simplified response analysis method (SRAM) is presented to calculate the VIV amplitude of steel tubes in transmission towers, which enables to build a dataset for training ML models. Then, by taking mass ratio M*, damping ratio ξ, and reduced velocity U* as the input variables, a Kriging-based prediction method (KPM) is further proposed to estimate the VIV amplitude of steel tubes in transmission towers by combining the SRAM with the Kriging-based ML model. Finally, the feasibility and effectiveness of the proposed methods are demonstrated by using three full-scale steel tubes with C-shaped, Cross-shaped, and Flange-plate joints, respectively. The results show that the SRAM can reasonably calculate the VIV amplitude, in which the relative errors of VIV maximum amplitude in three examples are less than 6%. Meanwhile, the KPM can well predict the VIV amplitude of steel tubes in transmission towers within the studied range of M*, ξ and U*. Particularly, the KPM presents an excellent capability in estimating the VIV maximum amplitude by using the reduced damping parameter SG.

Feature Analysis of Ultrasonic Signals for Diagnosis of Welding Faults in Tubular Steel Tower (관형 철탑 용접 결함 진단을 위한 초음파 신호의 특징 분석)

  • Min, Tae-Hong;Yu, Hyeon-Tak;Kim, Hyeong-Jin;Choi, Byeong-Keun;Kim, Hyun-Sik;Lee, Gi-Seung;Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.515-522
    • /
    • 2021
  • In this paper, we present and analyze a method of applying a machine learning to ultrasonic test signals for constant monitoring of the welding faults in a tubular steel tower. For the machine learning, feature selection based on genetic algorithm and fault signal classification using a support vector machine have been used. In the feature selection, the peak value, histogram lower bound, and normal negative log-likelihood from 30 features are selected. Those features clearly indicate the difference of signals according to the depth of faults. In addition, as a result of applying the selected features to the support vector machine, it has been possible to perfectly distinguish between the regions with and without faults. Hence, it is expected that the results of this study will be useful in the development of an early detection system for fault growth based on ultrasonic signals and in the energy transmission related industries in the future.

Probabilistic bearing capacity assessment for cross-bracings with semi-rigid connections in transmission towers

  • Zhengqi Tang;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.309-321
    • /
    • 2024
  • In this paper, the effect of semi-rigid connections on the stability bearing capacity of cross-bracings in steel tubular transmission towers is investigated. Herein, a prediction method based on the hybrid model which is a combination of particle swarm optimization (PSO) and backpropagation neural network (BPNN) is proposed to accurately predict the stability bearing capacity of cross-bracings with semi-rigid connections and to efficiently conduct its probabilistic assessment. Firstly, the establishment of the finite element (FE) model of cross-bracings with semi-rigid connections is developed on the basis of the development of the mechanical model. Then, a dataset of 7425 samples generated by the FE model is used to train and test the PSO-BPNN model, and the accuracy of the proposed method is evaluated. Finally, the probabilistic assessment for the stability bearing capacity of cross-bracings with semi-rigid connections is conducted based on the proposed method and the Monte Carlo simulation, in which the geometric and material properties including the outer diameter and thickness of cross-sections and the yield strength of steel are considered as random variables. The results indicate that the proposed method based on the PSO-BPNN model has high accuracy in predicting the stability bearing capacity of cross-bracings with semi-rigid connections. Meanwhile, the semi-rigid connections could enhance the stability bearing capacity of cross-bracings and the reliability of cross-bracings would significantly increase after considering semi-rigid connections.

Development of Vertical Separated Tubular Steel Pole (종방향 분할형 관형지지물 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.257-262
    • /
    • 2019
  • Lattice steel towers for overhead transmission lines have been replaced by tubular steel poles due to the visual impact of large and complex shape of truss type. Demand for tubular steel poles consisting of a single frame member continues to grow because of its advantages such as visual minimization, architectural appeal and minimal site consumptions. However, there are some constraints on the transportation and construction. As the diameter of tower base has been enlarged, it may exceed minimum height limit required to pass the tunnel in case of land transportation. Also, in a narrow place where it is not easy to secure the installation areas such as mountainous places, there might be some areas wherein it must secure a wide working space so that large vehicles and working cranes will be allowed to enter. In this paper, we presented a vertical separated tubular steel pole, which is a new type of support that can be implemented for general purpose such as mountainous areas or narrow areas to improve the issues raised by breaking away from the conventional design and fabrication methods. Technical approaches for overcoming the limit of the cross-sectional size is to separate and modularize the cross-section of the tubular steel pole designed with a size that cannot be carried or assembled, and to lighten it with a weight capable of being transported and assembled in a narrow space or mountainous area. As a result of this research, it will be possible to enter small and medium sized vehicles in locations where it is restricted to transport by large-sized vehicles. In the case of mountainous areas, it will be possible to divide it into a weight capable of being carried by a helicopter and it will be easy to adjust and fabricate it with individual modules. Furthermore, in order to break away from the traditional construction method, we proposed the equipment that can be applied to the assembly of Tubular Steel Pole without using a large crane in locations where there is no accessible road or in locations wherein large cranes cannot enter. In particular, this paper shows the movable assembling equipment and some methods that are specialized for vertical separated tubular steel pole consisting of members with reduced weight. The proposed assembly equipment is a device for assembling the body of the Tubular Steel Poles. It will be installed inside the support and the modules can be lifted by using the support itself.