• 제목/요약/키워드: steel truss arch bridge

검색결과 9건 처리시간 0.02초

RAMS evaluation for a steel-truss arch high-speed railway bridge based on SHM system

  • Zhao, Han-Wei;Ding, You-Liang;Geng, Fang-Fang;Li, Ai-Qun
    • Structural Monitoring and Maintenance
    • /
    • 제5권1호
    • /
    • pp.79-92
    • /
    • 2018
  • The evaluation theory of reliability, availability, maintainability and safety (RAMS) as a mature theory of state evaluation in the railway engineering, can be well used to the evaluation, management, and maintenance of complicated structure like the long-span bridge structures on the high-speed railway. Taking a typical steel-truss arch bridge on the Beijing-Shanghai high-speed railway, the Nanjing Dashengguan Yangtze River Bridge, this paper developed a new method of state evaluation for the existing steel-truss arch high-speed railway bridge. The evaluation framework of serving state for the bridge structure is presented based on the RAMS theory. According to the failure-risk, safety/availability, maintenance of bridge members, the state evaluation method of each monitoring item is presented. The weights of the performance items and the monitoring items in all evaluation levels are obtained using the analytic hierarchy process. Finally, the comprehensive serving state of bridge structure is hierarchical evaluated.

Seismic analysis of half-through steel truss arch bridge considering superstructure

  • Li, Ruiqi;Yuan, Xinzhe;Yuan, Wancheng;Dang, Xinzhi;Shen, Guoyu
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.387-401
    • /
    • 2016
  • This paper takes a half-through steel truss arch bridge as an example. A seismic analysis is conducted with nonlinear finite element method. Contrast models are established to discuss the effect of simplified method for main girder on the accuracy of the result. The influence of seismic wave direction and wave-passage on seismic behaviors are analysed as well as the superstructure and arch ring interaction which is mostly related with the supported bearings and wind resistant springs. In the end, the application of cable-sliding aseismic devices is discussed to put forward a layout principle. The main conclusions include: (1) The seismic response isn't too distinctive with the simplified method of main girder. Generally speaking, the grillage method is recommended. (2) Under seismic input from different directions, arch foot is usually the mostly dangerous section. (3) Vertical wave input and horizontal wave-passage greatly influence the seismic responses of arch ring, significantly increasing that of midspan. (4) The superstructure interaction has an obvious impact on the seismic performance. Half-through arch bridges with long spandrel columns fixed has a less response than those with short ones fixed. And a large stiffness of wind resistant spring makes the the seismic responses of arch ring larger. (5) A good isolation effectiveness for half-through arch bridge can be achieved by a reasonable arrangement of CSFABs.

Investigation on vibration behavior of a high-speed railway bridge based on monitoring data

  • Qingxin Zhu;Hao Wang;Billie F. Spencer Jr
    • Smart Structures and Systems
    • /
    • 제31권6호
    • /
    • pp.585-599
    • /
    • 2023
  • Field monitoring techniques offer an attractive approach for understanding bridge behavior under in-service loads. However, the investigations on bridge behavior under high-speed train load using field monitoring data are limited. The focus of this study is to explore the structural behavior of an in-service long-span steel truss arch bridge based on field monitoring data. First, the natural frequencies of the structure, as well as the train driving frequencies, are extracted. Then, the train-induced bearing displacement and structural strain are explored to identify the effects of train loads and bearings. Subsequently, a sensitivity analysis is performed for the impact factor of strain responses with respect to the train speed, train weight, and temperature to identify the fundamental issues affecting these responses. Additionally, a similar sensitivity analysis is conducted for the peak acceleration. The results indicate that the friction force in bearings provides residual deformations when two consecutive trains are in opposite directions. In addition, the impact factor and peak acceleration are primarily affected by train speed, particularly near train speeds that result in the resonance of the bridge response. The results can provide additional insight into the behavior of the long-span steel truss bridges under in-service high-speed train loads.

Reliability analysis for lateral stability of tongwamen bridge

  • Pan, Sheng-Shan;Lei, Shi;Tan, Yong-Gang;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.423-434
    • /
    • 2011
  • Tongwamen Bridge is a critical link between Dongmen Island and the land in Shipu town, Zhejiang province, China. It is a 238 m span, half-through, concrete-filled steel tubular (CFST) X-type arch bridge. The width of the deck is only 10 m, yielding a width-to-span ratio of 1/23.8. The plane truss type section rib was adopted, which made of two CFST chords and web member system. The lateral stability is the key issue to this bridge. However, the existing researches on Tongwamen Bridge's lateral stability are all the deterministic structural analysis. In this paper, a new strategy for positioning sampling points of the response surface method (RSM), based on the composite method combining RSM with geometric method for structural reliability analysis, is employed to obtain the reliability index of lateral stability. In addition the correlated parameters were discussed in detail to find the major factors. According to the analysis results, increasing the stiff of lateral braces between the arch ribs and setting the proper inward-incline degree of the arch rib can enhance obviously the reliability of lateral stability. Moreover, the deck action of non-orienting force is less than the two factors above. The calculated results indicate that the arch ribs are safe enough to keep excellent stability, and it provides the foundation that the plane truss rib would be a competitive solution for a long-span, narrow, CFST arch bridge.

Field monitoring of the train-induced hanger vibration in a high-speed railway steel arch bridge

  • Ding, Youliang;An, Yonghui;Wang, Chao
    • Smart Structures and Systems
    • /
    • 제17권6호
    • /
    • pp.1107-1127
    • /
    • 2016
  • Studies on dynamic characteristics of the hanger vibration using field monitoring data are important for the design and evaluation of high-speed railway truss arch bridges. This paper presents an analysis of the hanger's dynamic displacement responses based on field monitoring of Dashengguan Yangtze River Bridge, which is a high-speed railway truss arch bridge with the longest span throughout the world. The three vibration parameters, i.e., dynamic displacement amplitude, dynamic load factor and vibration amplitude, are selected to investigate the hanger's vibration characteristics in each railway load case including the probability statistical characteristics and coupled vibration characteristics. The influences of carriageway and carriage number on the hanger's vibration characteristics are further investigated. The results indicate that: (1) All the eight railway load cases can be successfully identified according to the relationship of responses from strain sensors and accelerometers in the structural health monitoring system. (2) The hanger's three vibration parameters in each load case in the longitudinal and transverse directions have obvious probabilistic characteristics. However, they fall into different distribution functions. (3) There is good correlation between the hanger's longitudinal/transverse dynamic displacement and the main girder's transverse dynamic displacement in each load case, and their relationships are shown in the hysteresis curves. (4) Influences of the carriageway and carriage number on the hanger's three parameters are different in both longitudinal and transverse directions; while the influence on any of the three parameters presents an obvious statistical trend. The present paper lays a good foundation for the further analysis of train-induced hanger vibration and control.

System identification of highway bridges from ambient vibration using subspace stochastic realization theories

  • Ali, Md. Rajab;Okabayashi, Takatoshi
    • Earthquakes and Structures
    • /
    • 제2권2호
    • /
    • pp.189-206
    • /
    • 2011
  • In this study, the subspace stochastic realization theories (SSR model I and SSR model II) have been applied to a real bridge for estimating its dynamic characteristics (natural frequencies, damping constants, and vibration modes) under ambient vibration. A numerical simulation is carried out for an arch-type steel truss bridge using a white noise excitation. The estimates obtained from this simulation are compared with those obtained from the Finite Element (FE) analysis, demonstrating good agreement and clarifying the excellent performance of this method in estimating the structural dynamic characteristics. Subsequently, these methods are applied to the vibration induced by both strong and weak winds as obtained by remote monitoring of the Kabashima bridge (an arch-type steel truss bridge of length 136 m, and situated in Nagasaki city). The results obtained with this experimental data reveal that more accurate estimates are obtained when strong wind vibration data is used. In contrast, the vibration data obtained from weak wind provides accurate estimates at lower frequencies, and inaccurate accuracy for higher modes of vibration that do not get excited by the wind of lower intensity. On the basis of the identified results obtained using both simulated data and monitored data from a real bridge, it is determined that the SSR model II realizes more accurate results than the SSR model I. In general, the approach investigated in this study is found to provide acceptable estimates of the dynamic characteristics of highway bridges as well as for the vibration monitoring of bridges.

Damage identification for high-speed railway truss arch bridge using fuzzy clustering analysis

  • Cao, Bao-Ya;Ding, You-Liang;Zhao, Han-Wei;Song, Yong-Sheng
    • Structural Monitoring and Maintenance
    • /
    • 제3권4호
    • /
    • pp.315-333
    • /
    • 2016
  • This study aims to perform damage identification for Da-Sheng-Guan (DSG) high-speed railway truss arch bridge using fuzzy clustering analysis. Firstly, structural health monitoring (SHM) system is established for the DSG Bridge. Long-term field monitoring strain data in 8 different cases caused by high-speed trains are taken as classification reference for other unknown cases. And finite element model (FEM) of DSG Bridge is established to simulate damage cases of the bridge. Then, effectiveness of one fuzzy clustering analysis method named transitive closure method and FEM results are verified using the monitoring strain data. Three standardization methods at the first step of fuzzy clustering transitive closure method are compared: extreme difference method, maximum method and non-standard method. At last, the fuzzy clustering method is taken to identify damage with different degrees and different locations. The results show that: non-standard method is the best for the data with the same dimension at the first step of fuzzy clustering analysis. Clustering result is the best when 8 carriage and 16 carriage train in the same line are in a category. For DSG Bridge, the damage is identified when the strain mode change caused by damage is more significant than it caused by different carriages. The corresponding critical damage degree called damage threshold varies with damage location and reduces with the increase of damage locations.

리기다소나무 구조용 집성재를 활용한 아치 트러스 목조교량의 전과정평가 (Life Cycle Assessment of Timber Arch-Truss Bridge by Using Domestic Pinus rigida Glued-Laminated Timber)

  • 손휘림;박주생;김광모
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권1호
    • /
    • pp.1-12
    • /
    • 2014
  • 본 연구에서는 리기다소나무 구조용 집성재를 사용한 국내 최초 차량용 목조교량에 대한 지구온난화 영향을 평가하기 위해 전과정평가를 수행하였다. 교량연장 30 m, 교량폭원 8.4 m, 교량등급 1등급인 아치 트러스 형태의 대상 교량은 원료채취부터 제조, 수송, 시공, 사용, 해체, 건설폐기물 수송, 폐기 및 재활용까지 설계수명 50년간 총 192.56 ton $CO_2$ eq.의 온실가스를 배출한다. 전과정단계 중 원료채취 및 제조단계에서 총 온실가스 배출량의 81.14%를 배출하며 특히, 콘크리트 사용으로 인하여 82.84 ton $CO_2$ eq.의 온실가스가 배출된다. 그러나 대상 교량은 $116.57m^3$의 국산 리기다소나무 집성재를 사용하였으며, 교량을 구성하는 목재에서 104.72 ton의 이산화탄소를 저장하고 있어 이를 적용할 경우, 총 온실가스 배출량의 54.38%를 저감 가능한 것으로 도출되었다. 대상 교량과 동일한 수명과 구조를 갖는 타 교량의 철골자재를 구조용 집성재로 대체할 경우, 원료채취 및 제조단계의 온실가스 배출량을 최소 10.26%에서 최대 23.91%까지 저감 가능한 것으로 도출되었다. 본 연구의 결과는 향후 국산 목재 및 목조교량의 친환경적 우수성을 정량적으로 입증할 수 있는 기반자료로 활용 가능할 것이며, 목조교량의 친환경적 설계와 보급을 위해 활용 가능할 것으로 사료된다.

댐퍼가 부착된 사장교의 케이블 장력에 관한연구 (A Study on Tension for Cables of a Cable-stayed Bridge Damper is Attached)

  • 박연수;최선민;양원열;홍혜진;김운형
    • 한국강구조학회 논문집
    • /
    • 제20권5호
    • /
    • pp.609-616
    • /
    • 2008
  • 국가경제력 향상과 함께 바다와 섬에 대한 관심이 높아지면서 육지와 섬, 섬과 섬을 연결하는 해상 장대교량이 많이 건설되고 있다. 장대교량은 현수교, 사장교, 아치교, 트러스교 등으로 대변할 수 있는데 그 중에서도 사장교는 주탑(Pylon)과 케이블(Cable), 보강형(Stiffened Girder)이 조화를 이루면서 외관이 아름다워 매력적인 교량형식의 하나로 최근 많이 계획되고 있다. 장력측정은 케이블에 설치한 가속도 센서로부터 케이블의 고유진동수 변화를 이용하는 간접법인 진동법을 적용하였다. 본 연구에서는 댐퍼 설치 케이블의 유효길이 산정식을 제안하였는데 이는 케이블의 유효길이 변화를 실측치와 해석값을 비교하여 분석한 것으로 기존의 유효길이 산정방법인 댐퍼와 정착단간의 순간격에 의한 것은 최종 케이블 장력값 추정에 있어서 신뢰도가 떨어짐을 확인할 수 있었다. 그러므로 향후 유지관리 단계에서는 본 연구에서 제안한 케이블의 유효길이 산정식을 활용하여 장력을 정확하게 파악하는 것이 케이블의 재긴장 및 교체시기 결정 등에도 합리적인 의사결정 자료로 사용될 수 있을 것이다.