• Title/Summary/Keyword: steel specimen

Search Result 1,904, Processing Time 0.027 seconds

STUDY ON DYNAMIC BEHAVIOUR IN 3PB DUCTILE STEEL SPECIMEN APPLIED BY THE IMPACT LOAD

  • HAN M. S.;CHO J. U.;BERGMARK A.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.229-234
    • /
    • 2005
  • The dynamic crack growth in ductile steel is investigated by means of the impact loaded 3 point bending (3PB) specimens. Results from experiments and numerical simulations are compared to each other. A modified 3PB specimen designed with the reduced width at its ends has been developed in order to avoid the initial compressive loading of the crack tip and also to avoid the uncertain boundary conditions at the impact heads. Numerical simulations of the experiments are made by using a finite element method (FEM) code, ABAQUS. The high speed photography is used to obtain the crack growth and the data of the crack tip opening displacement (CTOD). The direct measurements of the relative rotations of two specimen halves are made by using the Moire interference pattern.

Dynamic Crack Initiation of 17-4PH Casting Steel for Various Notch Radius (다양한 노치 반경을 갖는 17-4PH강의 동적균열개시 특성)

  • 박성욱;김덕회;김재훈;문순일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.160-163
    • /
    • 2003
  • In this study, intrinsic dynamic fracture toughness of 17-4PH casting steel is evaluated from the apparent dynamic fracture toughness of notched specimen. Notch radius of notched specimen is manufactured from 0.1mm to 4mm. The results shows that dynamic fracture toughness decreases with decreasing of notch root radius above critical notch roof radius. The true dynamic fracture toughness can be predicted from test results of apparent dynamic fracture toughness measured by using notched specimen.

  • PDF

Corrosion Protection Systems on Reinforcement Steep in Marine Concrete Structures (해양콘크리트 구조물의 철근방식 기법에 관한 실험연구)

  • 한기훈;장지원;이강균;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.265-271
    • /
    • 1997
  • Marine concrete structures have been exposed to salt from ocean environments. Chloride-penetration into marine concrete structures should accelerate the corrosion of reinforcement steel, which may severely affect the durability of them. Major concerns are to develop durable concrete for high corrosion resistance of reinforcing steel embedded in concrete. The objective of this experimental study is to investigate adequate usage of corrosion inhibitors by evaluating corrosion level in 80 specimen located in the labatory and in the site. 80 specimen of cube 20${\times}$20${\times}$11.5 and 63 specimen of slab 30${\times}$30${\times}$10 are made for this study.

  • PDF

The Improvement of Fatigue Properties by 2-step Shot Peening (2단쇼트피닝에 의한 피로특성의 향상)

  • 이승호;심동석
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.475-479
    • /
    • 2003
  • In this study, to investigate the effects of 2-step shot peening at the surface of spring steel, tests are conducted on spring steel and shot peened specimens. Various tests are accomplished to evaluate mechanical properties influenced by shot peening process, and fatigue tests are also performed to evaluate the improvement of fatigue strength. And then the residual stresses are examined. The mechanical properties of material did not change so much by shot peening. However, the fatigue strength of notched specimen remarkably increased. In the case of 1-step shot peening, fatigue strength increased by about 20% than unpeened specimen. Especially, in the case of 2-step shot peening, fatigue strength increased by about 40%, because the residual compressive stress at surface was higher than that of 1-step shot peened specimen. The fatigue strength and life are closely related to the value and position of maximum compressive residual stress by shot peening.

Crack Behavior of Steel Fiber Reinforced Concrete (강섬유 철근콘크리트의 균열특성)

  • 강보순;황성춘;심형섭
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.336-343
    • /
    • 2000
  • Crack behavior of steel fiber concrete(SFC) and reinforced steel fiber concrete(RSFC) specimens has been experimentally and analytical investigated. Clack behavior of RSFC beams influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strenth of concrete. It can be observed from experimental result that addition of steel fiber to concrete specimen reduce crack width and increases stiffness, and thus enhances the behavior in serviceability limit states also high cyclic loading

  • PDF

A Study of Non-destructive Measurement on the Reinforced Concrete Structure Damaged by Reinforcing Steel Corrosion (철근콘크리트구조물의 철근부식에 대한 비파괴 측정과 부식에 따른 균열거동)

  • 김성운;정한중;김창환;임선택
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.80-85
    • /
    • 1991
  • This experimental study was performed to derive the relationship between the measured values(corrosion potential) and the actual amount of corrosion products(reinforcing steel weight loss rate). Also the growth of crack due to the steel corrosion was oberved. First, the reinforcing steel of R/C specimen was corroded with chloride penetration and accelerated galvanostatic corrosion method. And then, the corrosion potential of reinforcing steel was measured with nondestructive tester.

  • PDF

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.

An Analysis Finite Element for Element for Elasto-Plastic Thermal Stresses Considerating Strain Hysteresis at Quenching Process of Carbon Steel (I) - Analysis of temperature distribution - (탄소강의 담금질 처리과정에서 변형율이력을 고려한 탄소성열응력의 유한요소 해석(I) - 온도분포의 해석 -)

  • Kim, Ok-Sam;Cho, Eui-Il;Koo, Bon-Kwon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.213-221
    • /
    • 1995
  • Temperature distribution, transformation and residual stresses generated during the quenching process of carbon steel. It follows many difficulties in the analytical considerations on those quenching process because of the coupling effects on temperature and metallic structures. In this paper one of the basic study on the quenching stresses was carried out for the case of the round steel bar specimen(SM45C) with 40mm both in its diameter and length. The temperature distributions considering strain hysteresis were numerically calculated by finite element technique. In calculating the transient temperature field, the heat flux between water and rod surface was determined from the heat transfer coefficient. The gradient of temperature is almost same to geometric of specimen. At early stage of the quenching process, the abrupt temperature gradient has been shown in the surface of the specimen.

  • PDF

The Characteristics of Mechanical Properties and Fatigue Crack Propagation of Fire Resistance Steel for Frame Structure (구조용 내화강의 기계적 성질과 피로균열전파 특성에 관한 연구)

  • Kim, Hyeon-Su;Nam, Gi-U;Gang, Chang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.54-60
    • /
    • 2001
  • This study is to investigate the mechanical properties and the fatigue crack propagation of fire resistance steel for frame structure as the chemical composition was changed by addition of N, B and rolled end temperature was varied. We used two kinds of specimen, the one is parallel and the other is perpendicular to the rolling directions. As rolled end temperature increased, volume fraction of ferrite and pearlite decreased, but volume fraction of baintie and grain size increased. Micro-hardness decreased as rolled end temperature increased, but tensile and yield strength increased. Volume fraction of ferrite and pearlite decreased by addition of N. But volume fraction of bainite, tensile and yield strength increased. Microstructure was changed to martensite by addition of B, and tensile and yield strength increased. Fatigue life of TL direction specimen was shorter than that of LT direction specimen. There was no significant effect to fatigue crack propagation rate by addition of N and changing rolling condition, but fatigue life was increased by addition of B.

Variability of Fatigue Crack Initiation Life in Flux Cored Arc Welded API 2W Gr.50 Steel Joints

  • Sohn, Hye-Jeong;Kim, Seon-Jin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.160-169
    • /
    • 2012
  • Flux Cored Arc Welding (FCAW) is a common practice to join thick plates such as the structural members of large scale offshore structures and very large container ships. The objective of this study was to investigate the mechanical properties and variability of the fatigue crack initiation life in the flux cored arc welded API 2W Gr.50 steel joints typically applied to offshore structures with a focus on the effect of the materials in fatigue crack growth life from the notch root of a compact tension specimen. Offshore structural steel (API 2W Gr.50) plates (60-mm thick) were used to fabricate multi-path flux core arc welded butt welded joints to clearly consider fatigue fractures at the weld zone from the notch. Fatigue tests were performed under a constant amplitude cyclic loading of R = 0.4. The mean fatigue crack initiation life of the HAZ specimen was the highest among the base metal (BM), weld metal (WM), and heat affected zone (HAZ). In addition, the coefficient of variation was the highest in the WMl specimen. The variability of the short fatigue crack growth rates from the notch tips in the WM and HAZ specimens was higher than in BM.