• Title/Summary/Keyword: steel reinforced concrete column

Search Result 586, Processing Time 0.022 seconds

Study on Reinforcement Effect of Circular RC Columns by Helical Bar Under Cyclic Lateral Load (반복 횡하중을 받는 원형 철근콘크리트 기둥의 Helical Bar 보강효과에 대한 연구)

  • Kim, Seong-Kyum;Park, Jong-Kwon;Han, Sang-Hee;Kim, Byung-Cheol;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • In this study, quasi-static according to the displacement-controlled (strain control) method tests on RC columns for seismic reinforcement performance in accordance with the provisions of the seismic design and construction before 1992 design code for highway bridges in korea. Used reinforcement that improves the performance of Inorganic Helical Bar, a kind of alloy steel, circular columns were tested outside the seismic reinforcing. In the experiment, fracture behavior, lateral load-displacement relation, ductility and energy assessment evaluation was performed through tests. The variables in experimental are section force of reinforcement, spiral reinforcement spacing, reinforcement method. Improved seismic performance and effect were confirmed through quasi-static test experiments. The results of study confirmed determination the appropriate size of reinforcement, reinforcement forces, spacing and selection of the type required, furthermore, not only mechanical reinforcement but also substitution of high-strength concrete reinforced with concrete cover improved seismic performance.

Evaluation of Service Life in RC Column under Chloride Attack through Field Investigation: Deterministic and Probabilistic Approaches (염해 실태조사를 통한 철근 콘크리트 교각의 내구수명 평가 - 결정론적 및 확률론적 해석방법)

  • Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.67-74
    • /
    • 2015
  • RC (Reinforced Concrete) structures are considered as cost-benefit and durable however performances of structural safety and durability are degraded due to steel corrosion. Service life in RC structure is differently evaluated due to different local environmental conditions even if it is exposed to the same chloride attack. In the paper, 25 concrete cores from field investigation are obtained from 4 RC columns with duration of 3.5~4.5 years exposed to sea water. Through total chloride content measurement, surface chloride contents and apparent diffusion coefficients are evaluated. Service life of the target structure is estimated through deterministic method based on Fick's $2^{nd}$ Law and probabilistic method based on durability failure probability, respectively. Probability method is evaluated to be more conservative and relatively decreased service life is evaluated in tidal zone and splash zone over 40.0 m. Chloride penetration behavior with coring location from sea level and the present limitations of durability design method are investigated in the paper.

Experimental Curvature Analysis of Reinforced Concrete Piers with Lap-Spliced Longitudinal Steels subjected to Seismic Loading (지진하중을 받는 주철근 겹침이음된 철근콘크리트 교각의 곡률분석)

  • Chung, Young-Soo;Park, Chang-Kyu;Song, Hee-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.41-49
    • /
    • 2006
  • Through the 1982 Urahawa-ohi and the 1995 Kobe earthquakes, a number of bridge columns were observed to develop a flexural-shear failure due to the bond slip as a consequence of premature termination of the column longitudinal reinforcement. Because the seismic behavior of RC bridge piers is largely dependent on the performance of the plastic hinge legion of RC bridge piers, it is desirable that the seismic capacity of RC bridge pier is to evaluate as a curvature ductility. The provision for the lap splice of longitudinal steel was not specified in KHBDS(Korea Highway Bridge Design Specification) before the implementation of 1992 seismic design code, but the lap splice of not more than 50%, longitudinal reinforcement was newly allowed in the 2005 version of the KHBDS. The objective of this research is to investigate the distribution and ductility of the curvature of RC bridge column with the lap splice of longitudinal reinforcement in the plastic hinge legion. Six (6) specimens were made in 600 mm diameter with an aspect ratio of 2.5 or 3.5. These piers were cyclically subjected to the quasi-static loads with the uniform axial load of $P=0.1f_{ck}A_g$. According to the slip failure of longitudinal steels of the lap spliced specimen by cyclic loads, the curvatures of the lower and upper parts of the lap spliced region were bigger and smaller than the corresponding paris of the specimen without a lap splice, respectively. Therefore, the damage of the lap spliced test column was concentrated almost on the lower part of the lap spliced region, that appeared io be failed in flexure.

Development of Linear Static Alternate Path Progressive Collapse Analysis Procedure Using a Nonlinear Static Analysis Procedure (비선형정적해석 절차를 이용한 선형정적 연쇄붕괴 대체경로 해석방법 개발)

  • Kim, Jin-Koo;Park, Sae-Ro-Mi;Seo, Young-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.569-576
    • /
    • 2011
  • In this paper a new analysis procedure for evaluation of progressive collapse resisting capacity of a structure was proposed based on the nonlinear static analysis procedure. The proposed procedure produces analysis results identical to those obtained by the linear static analysis procedure specified in the GSA guidelines without iteration, therefore saving a lot of computation time and excluding the possibility of human errors during the procedure. To verify the validity of the proposed procedure, the two methods were applied to the analysis of a reinforced concrete moment frame and a steel braced frame subjected to loss of a first story column and the results were compared. According to the analysis results, the two methods produce identical results in the prediction of progressive collapse and the hinge formation. As iterative analysis is not required in the proposed method, significant amount of analysis time is saved in the proposed analysis procedure.

Slab slenderness effect on the punching shear failure of heat-damaged reinforced concrete flat slabs with different opening configurations and flexural reinforcement areas

  • Rajai Z. Al-Rousan;Bara'a R. Alnemrawi
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.627-645
    • /
    • 2024
  • Punching shear is a brittle failure that occurs within the RC flat slabs where stresses are concentrated within small regions, resulting in a catastrophic and unfavorable progressive collapse. However, increasing the slab slenderness ratio is believed to significantly affect the slab's behavior by the induced strain values throughout the slab depth. This study examines the punching shear behavior of flat slabs by the nonlinear finite element analysis approach using ABAQUS software, where 72 models were investigated. The parametric study includes the effect of opening existence, opening-to-column ratio (O/C), temperature level, slenderness ratio (L/d), and flexural reinforcement rebar diameter. The behavior of the punching shear failure was fully examined under elevated temperatures which was not previously considered in detail along with the combined effect of the other sensitive parameters (opening size, slab slenderness, and reinforcement rebar size). It has been realized that increasing the slab slenderness has a major role in affecting the slab's structural behavior, besides the effect of the flexural reinforcement ratio. Reducing the slab's slenderness from 18.27 to 5.37 increased the cracking load by seven times for the slab without openings compared to nine times for the initial stiffness value. In addition, the toughness capacity is reduced up to 80% upon creating an opening, where the percentage is further increased by increasing the opening size by about an additional 10%. Finally, the ultimate deflection capacity of flat slabs with an opening is increased compared to the solid slab with the enhancement being increased for openings of larger size, larger depths, and higher exposure temperature.

A Study on Reliability Based Design Criteria for Reinforced Concrete Columns (철근(鐵筋)콘크리트기둥의 신뢰성(信賴性) 설계규준(設計規準)에 관한 연구(研究))

  • Cho, Hyo Nam;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.25-33
    • /
    • 1983
  • This study is directed to propose a set of reliability based design provisions which gives more rational design for R.C. columns than the current WSD or USD standard design codes. Cornell's MFOSM theory is used for the derivation of the algorithm for the evaluation of uncertainties associated with resistances, whereas the magnitude of the uncertainties associated with load effects are chosen primarily by considering our level of practice. And thus the uncertainties so obtained are applied for the reliability analysis and the derivation of reliability based design criteria. A target reliability(${\beta}_0=4.0$) is selected as an appropriate value by comparing the values used in foreign countries and by analyzing the reliability levels of our current USD and WSD design standars. Then, a set of load and resistance factors corresponding to the target reliability is proposed as a reliability based design provision, and furthermoere a set of allowable stresses for reinforcing steel and concrete having same level of relibity with the corresponding LRFD criteria is also propared for the current WSD design provision. It may be concluded that the proposed LRFD reliability based design provisions and the corresponding allowable stresses give more rational design than the current code for R.C. columns and may be desirable to introdue into the current WSD and USD provision of R.C. column design.

  • PDF