• Title/Summary/Keyword: steel profile

Search Result 304, Processing Time 0.025 seconds

Comparison of Characteristics on Induction and Continuous Nd:YAG Laser Surface hardening of SM45C Steel (SM45C강의 연속파 Nd:YAG레이저표면경화와 고주파표면경화특성 비교)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Shin B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.176-183
    • /
    • 2005
  • Laser heat treatment technology is used for improving the feature of fatigue resistance and wear resistance in mobile parts. The purpose of this study is to compare the characteristics of laser heat treatment and high frequency heat treatment, which is commonly used in industrial place. For the preemptive experiment, the distribution, depth and size of hardening and its micro-structural features were compared between surface heat treatment case by defocusing and variables of each process for heat treatment by exclusively manufactured heat treatment optical system. As a result, high frequency heat treatment has wide distribution of hardening depth and width about 3 times larger than laser heat treatment, however, its average hardness showed 621.4Hv which is smaller than the average hardness of laser heat treatment with 691Hv.

  • PDF

Characterization of Elliptical Dimple Fabricated with Dual Frequency Vibration Assisted Machining (이중 주파수 지원 절삭으로 가공된 타원형 딤플의 특성)

  • Park, Gun Chul;Ko, Tae Jo;Kurniawan, Rendi;Ali, Saood
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.23-31
    • /
    • 2021
  • Surface texturing is a promising route to reduce the friction forces between two surfaces in sliding contact. To this end, the fabrication of micro dimples is one of the most widely used surface texturing methods. According to published results, textured surfaces with elliptical micro dimples offer the best friction performance. Therefore, we fabricated elliptical micro dimples on carbon steel (SM45C) by using dual frequency vibration assisted machining. High and low frequencies of 16.3 kHz and 230 Hz were applied to the 3D resonant elliptical vibrator. The 3D resonant elliptical vibrator with a triangular cubic boron nitride insert was assembled on a computer numerically controlled turning lathe. Oval micro dimples of various profiles were manufactured on carbon steel. In terms of the profile of the elliptical micro dimples, the experimental results indicated that the average micro dimple width and depth were 112 ㎛ and 7.7 ㎛. These dimensions are closely related to the cutting conditions and can be easily controlled.

Seismic performance of a novel bolt-and-welded connection of box-section beam and box-section column

  • Linfeng Lu;Songlin Ding;Yuzhou Liu;Zhaojia Chen;Zhongpeng Li
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.375-382
    • /
    • 2023
  • The H-shaped steel beam is popular due to its ease of manufacturing and connection to the column. This profile, which is used as a shallow beam, needs the high weak-axis bending stiffness and torsional stiffness to meet the overall stability. Achieving the local beam flange stability, bearing capacity, bending stiffness, and torsional requirements need a great thickness and width of the beam flange, which causes, which will cause more uneconomical structural design. So, the box-section beam is the ideal alternative. However, the current design specifications do not have design rules for the bolt-and-welded connection of the box-section beam and box-section column. The paper proposes a novel bolt-and-welded connection of the box-section beams and box-section columns based on a high-rise structural design scheme. Three connection models, BASE, WBF, and RBS, are analyzed under cyclic loading in ABAQUS software. The failure modes, hysteresis response, bearing capacity, ductility, plastic rotation angle, energy dissipation, and stiffness degradation of all models are determined and compared. Compared with the other two models, the model WBF exhibited excellent seismic performance, ductility, and plastic rotation ability. Finally, model WBF was chosen as the connection scheme used in the project design.

Experimental investigation of the influence of fibre content on the flexural performance of simply supported and continuous steel/UHPC composite slabs

  • Sirui Chen;Phillip Visintin;Deric J. Oehlers
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.571-585
    • /
    • 2023
  • The application of relatively low volumes of fibres in normal strength concrete has been shown to be of significant benefit when applied to composite slabs with profiled sheet decking. This paper reports on an experimental study aimed at quantifying further potential benefits that may arise from applying ultra-high performance fibre reinforced concrete. To assess performance six simply supported beams were tested under hogging and sagging loading configurations along with three two span continuous beams. Fibre contents are varied from 0% to 2% and changes in strength, deformation, crack width and moment redistribution are measured. At the serviceability limit state, it is shown that the addition of high fibre volumes can significantly enhance member stiffness and reduce crack widths in all beams. At the ultimate limit state it is observed that a transition from 0% to 1% fibres significantly increases strength but that there is a maximum fibre volume beyond which no further increases in strength are possible. Conversely, member ductility and moment redistribution are shown to be strongly proportional to fibre volume.

Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings

  • Isavand, S.;Bodaghi, M.;Shakeri, M.;Mohandesi, J. Aghazadeh
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.1-28
    • /
    • 2015
  • In this paper, the dynamic response of functionally gradient steel (FGS) composite cylindrical panels in steady-state thermal environments subjected to impulsive loads is investigated for the first time. FGSs composed of graded ferritic and austenitic regions together with bainite and martensite intermediate layers are analyzed. Thermo-mechanical material properties of FGS composites are predicted according to the microhardness profile of FGS composites and approximated with appropriate functions. Based on the three-dimensional theory of thermo-elasticity, the governing equations of motionare derived in spatial and time domains. These equations are solved using the hybrid Fourier series expansion-Galerkin finite element method-Newmark approach for simply supported boundary conditions. The present solution is then applied to the thermo-elastic dynamic analysis of cylindrical panels with three different arrangements of material compositions of FGSs including ${\alpha}{\beta}{\gamma}M{\gamma}$, ${\alpha}{\beta}{\gamma}{\beta}{\alpha}$ and ${\gamma}{\beta}{\alpha}{\beta}{\gamma}$ composites. Benchmark results on the displacement and stress time-histories of FGS cylindrical panels in thermal environments under various pulse loads are presented and discussed in detail. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state of the art of this problem, and provide pertinent results that are instrumental in the design of FGS structures under time-dependent mechanical loadings.

Fatigue performance of deepwater SCR under short-term VIV considering various S-N curves

  • Kim, D.K.;Choi, H.S.;Shin, C.S.;Liew, M.S.;Yu, S.Y.;Park, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.881-896
    • /
    • 2015
  • In this study, a method for fatigue performance estimation of deepwater steel catenary riser (SCR) under short-term vortex-induced vibration was investigated for selected S-N curves. General tendency between S-N curve capacity and fatigue performance was analysed. SCRs are generally used to transport produced oil and gas or to export separated oil and gas, and are exposed to various environmental loads in terms of current, wave, wind and others. Current is closely related with VIV and it affects fatigue life of riser structures significantly. In this regards, the process of appropriate S-N curve selection was performed in the initial design stage based on the scale of fabrication-related initial imperfections such as welding, hot spot, crack, stress concentration factor, and others. To draw the general tendency, the effects of stress concentration factor (SCF), S-N curve type, current profile, and three different sizes of SCRs were considered, and the relationship between S-N curve capacity and short-term VIV fatigue performance of SCR was derived. In case of S-N curve selection, DNV (2012) guideline was adopted and four different current profiles of the Gulf of Mexico (normal condition and Hurricane condition) and Brazil (Amazon basin and Campos basin) were considered. The obtained results will be useful to select the S-N curve for deepwater SCRs and also to understand the relationship between S-N curve capacity and short-term VIV fatigue performance of deepwater SCRs.

Characterization of DLC Coated Surface of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X Steel (DLC 코팅한 Fe-3.0%Ni-0.7%Cr-1.4%Mn-X강의 표면특성평가)

  • Jang, Jaecheol;Kim, Song-Hee
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The various surface treated conditions of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X steel such as as-received, ion nitriding, DLC coated, DLC coated after nitriding for 3 hrs and 6 hrs were investigated to evaluate the beneficial effect for plastic mold steel. Micro Vickers hardness tester was used to estimate nitriding depth from the hardness profile and to measure hardness on the surface. Elastic modulus and residual stress were measured by a nanoindentator. Scratch test and SP (small ball punch test) were utilized to assess the adhesive strength of DLC coating. The depth of nitriding layer was measured as $50{\mu}m$ for the condition of 3 hrs nitriding and $90{\mu}m$ for that of 6 hrs nitriding. Hardness, elastic modulus, residual stress of DLC coating were 20.37 GPa, 162.78 GPa and -1456 MPa respectively. Residual stress on the surface of DLC coating after nitriding could increase to -3914 MPa by introducing nitriding before DLC coating. During the 'Ball-On-Disc' test ${\gamma}^{\prime}$ particles pulled out from the surface of nitrized layer tend to enhance abrasive wear mode since the fraction of ${\gamma}^{\prime}$ (Fe4N) in ion-nitrized layer is known to increases with nitriding time. Thus the specific wear rate of the nitriding layer increased. Comparing with nitriding the specific wear rate in work piece disc as well as ball decreased prominently in DLC coating due to the remarkable reduction in friction coefficient.

Characterization of the High-temperature Isothermal Aging in USC Ferritic Steel Using Reversible Permeability (가역투자율을 이용한 초초임계압 페라이트기 강의 고온 등온열화 평가)

  • Kim, Chung-Seok;Ryu, Kwon-Sang;Nahm, Seung-Hoon;Lee, Seung-Seok;Park, Ik-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.100-105
    • /
    • 2009
  • The high-temperature isothermal aging is studied in ultra-supercritical steel, which is attractive to the next generation of power plants. The effects of microstructure on reversible permeability are discussed. Isothermal aging was observed to coarsen the tempered carbide ($Cr_{23}C_6$), generate the intermetallic ($Fe_2W$) phase and grow rapidly during aging. The dislocation density also decreases steeply within lath interior. The dynamic coercivity, measured from the peak position of the reversible permeability profile decreased drastically during the initial 500 h aging period, and was thereafter observed to decrease only slightly. The variation in dynamic coercivity is closely related to the decrease in the number of pinning sites, such as dislocations, fine precipitates and the martensite lath.

Experimental evaluation of steel connections with horizontal slit dampers

  • Lor, Hossein Akbari;Izadinia, Mohsen;Memarzadeh, Parham
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.79-90
    • /
    • 2019
  • This study introduces new connections that connect the beam to the column with slit dampers. Plastic deformations and damages concentrate on slit dampers. The slit dampers prevent plastic damages of column, beam, welds and panel zone and act as fuses. The slit dampers were prepared with IPE profiles that had some holes in the webs. In this paper, two experimental specimens were made. In first specimen (SDC1), just one slit damper connected the beam to the column and one IPE profile with no holes connected the bottom flange of the beam to the column. The second specimen (SDC2) had two similar dampers which connected the top and bottom flange of the beam to the column. Cyclic loading was applied on Specimens. The cyclic displacements conditions continued until 0.06 radian rotation of connection. The experimental observations showed that the bending moment of specimen SDC2 increased until 0.04 story drift. In specimen SDC1, the bending moment decreases after 0.03 story drift. Test results indicate the high performance of the proposed connection. Based on the results, the specimen with two slit damper (SDC2) has higher seismic performance and dissipates more energy in loading process than specimen SDC1. Theoretical formulas were extended for the proposed connections. Numerical studies have been done by ABAQUS software. The theoretical and numerical results had good agreements with the experimental data. Based on the experimental and numerical investigations, the high ductility of connection is obtained from plastic damages of slit dampers. The most flexural moment of specimen SDC1 occurred at 3% story drift and this value was 1.4 times the plastic moment of the beam section. This parameter for SDC2 was 1.73 times the plastic moment of the beam section and occurred at 4% story drift. The dissipated energy ratio of SDC2 to SDC1 is equal to 1.51.

Characteristics of Subsidence of a Road During the New Tubular Roof Construction Around a Shallow Tunnel (저심도 터널주변의 NTR보강 중 발생한 도로면 침하의 특성)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.620-634
    • /
    • 2018
  • The NTR(New Tubular Roof) method was used to secure the stability of the tunnel and minimize the subsidence of the road. The tunnel was constructed at about 7.5 meters deep below the highway. with a width of about 21 meters. Following the NTR method, 13 steel pipes with a diameter of 2.3 meters were digged and pushed in longitudinally along the tunnel profile and cut out sides of pipes to connect to adjacent pipes, then filled the inside of pipes and the connected space between pipes with concrete to complete the lining of the tunnel to be excavated. As the steel pipes were digged in sequentially, the area of relaxation was connected to each other and behaves like a gradually widening tunnel. When the steel pipes were digged in to the widest points of the tunnel, the settlement rate of the road surface was increasing to the maximum as 2.2 mm and the total settlement until the lining construction was approximately 7.7 mm. After that, by excavating a tunnel inside the pre-installed lining, an additional settlement of about 4.3 mm was occurred, resulting in the total settlement of about 11.8 mm after completing of tunnel construction.