• Title/Summary/Keyword: steel plate girder railway bridge

Search Result 70, Processing Time 0.022 seconds

Damage Analysis of Thin Steel Members with Bolt Connection Using Lamb Wave and PZT Element (Lamb파 전달을 이용한 볼트 연결된 얇은 강판부재의 손상해석)

  • Rhee, Inkyu;Kwak, Hyo-Gyoung;Kim, Jae Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.587-596
    • /
    • 2006
  • A half portion of Korean railway bridges depends on the type of steel plate girder bridge. Since these bridges have been built in the early stage of Korean economical boom, numerous maintenance effort suffers from aging and progressive degradation issues at present. In accordance with these efforts, this paper would like to address the detailed analyses of thin steel plates with bolts in order to simulate the connection regions of steel plate girder bridge. The fundamental modal analysis, transient dynamic analysis with 3D piezoelectric element in open circuit loop and signal process with aids of TOF(time of flight) and WC(wavelet coefficient) are extensively discussed.

Dynamic Characteristics of Railway Plate Girder Bridges with Increase of Diesel Locomotive Speed (철도차량의 증속에 따른 판형교의 진동특성)

  • Cho, Eun Sang;Kim, Hyun Min;Hwang, Won Sup;Oh, Ji Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.769-782
    • /
    • 2006
  • As the ambient vibration test (AVT) of railway bridges has a limited range of speed, it has a limitation in examining the dynamic behavior of bridges accordingto speed. Thus, in order to analyze the correlation between the speed of a train passing over a bridge and the bridge's dynamic response, we conducted a speed-increasing experiment using a real diesel locomotive. To analyze the acceleration response characteristics, we attached seven vertical accelerometers at equal intervals throughout the entire section of the bridge except the supports, and one horizontal accelerometer to the middle span. Linear variable differential transformers (LVDT) were installed at the bridge's center in both vertical and horizontal directions to investigate the vertical and horizontal behaviors. The test train was statically loaded at the center and at the end of the bridge. And its speed was increased from 5 km/h to 90 km/h. With data obtained from the experiment, the vibration level was evaluated in each direction by the filtering frequency, and the level of horizontal vibration was examined in comparison with vertical vibration. The displacement and wheel load variation was analyzed by speed.

Experimental and numerical study on large-curvature curved composite box girder under hogging moment

  • Zhu, Li;Wang, Jia J.;Zhao, Guan Y.;Huo, Xue J.;Li, Xuan
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.117-136
    • /
    • 2020
  • Curved steel-concrete composite box girder has been widely adopted in urban overpasses and ramp bridges. In order to investigate its mechanical behavior under complicated and combined bending, shear and torsion load, two large-curvature composite box girders with interior angles of 25° and 45° were tested under static hogging moment. Based on the strain and deflection measurement on critical cross-sections during the static loading test, the failure mode, cracking behavior, load-displacement relationship, and strain distribution in the steel plate and rebar were investigated in detail. The test result showed the large-curvature composite box girders exhibited notable shear lag in the concrete slab and steel girder. Also, the constraint torsion and distortion effect caused the stress measured at the inner side of the composite beam to be notably higher than that of the outer side. The strain distribution in the steel web was approximately linear; therefore, the assumption that the plane section remains plane was approximately validated based on strain measurement at steel web. Furthermore, the full-process non-linear elaborate finite element (FE) models of the two specimens were developed based on commercial FE software MSC.MARC. The modeling scheme and constitutive model were illustrated in detail. Based on the comparison between the FE model and test results, the FE model effectively simulated the failure mode, the load-displacement curve, and the strain development of longitudinal rebar and steel girder with sufficient accuracy. The comparison between the FE model and the test result validated the accuracy of the developed FE model.

Dynamic Response and Reinforcement of the Railway Plate Girder Bridges (무도상 철도판형교의 동적응답특성 및 보강방안)

  • Hwang, Won Sup;Cho, Eun Sang;Oh, Ji Taek;Kim, Hyun Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.281-290
    • /
    • 2007
  • In this paper, the dynamic behavior of a 12m plate girder railway bridge is analyzed using the commercial FEM program. A time history load is applied to a standard train load via the shape function ofthe beam element. In addition, lateral behavior characteristics were simulated using the Klingel sine movement. A feasibility study of the FEM program and an analysis were performed by comparing the displacement and the acceleration, from the experimental data and the results of the FEM analysis. the time history of the lateral and vertical displacements are reflected in the experimental results. Six kinds of reinforcements were studied from the effects of the displacement and the acceleration. The RF-1 model that was applied to the upper lateral bracing system, and the RF-3 model that reinforced the plate, turned out to be the most effective reinforcement methods with respect to weight limits and construction simplification.

Utilization of deep learning-based metamodel for probabilistic seismic damage analysis of railway bridges considering the geometric variation

  • Xi Song;Chunhee Cho;Joonam Park
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.469-479
    • /
    • 2023
  • A probabilistic seismic damage analysis is an essential procedure to identify seismically vulnerable structures, prioritize the seismic retrofit, and ultimately minimize the overall seismic risk. To assess the seismic risk of multiple structures within a region, a large number of nonlinear time-history structural analyses must be conducted and studied. As a result, each assessment requires high computing resources. To overcome this limitation, we explore a deep learning-based metamodel to enable the prediction of the mean and the standard deviation of the seismic damage distribution of track-on steel-plate girder railway bridges in Korea considering the geometric variation. For machine learning training, nonlinear dynamic time-history analyses are performed to generate 800 high-fidelity datasets on the seismic response. Through intensive trial and error, the study is concentrated on developing an optimal machine learning architecture with the pre-identified variables of the physical configuration of the bridge. Additionally, the prediction performance of the proposed method is compared with a previous, well-defined, response surface model. Finally, the statistical testing results indicate that the overall performance of the deep-learning model is improved compared to the response surface model, as its errors are reduced by as much as 61%. In conclusion, the model proposed in this study can be effectively deployed for the seismic fragility and risk assessment of a region with a large number of structures.

Optimum Stiffness of the Sleeper Pad on an Open-Deck Steel Railway Bridge using Flexible Multibody Dynamic Analysis (유연다물체동적해석을 이용한 무도상교량 침목패드의 최적 강성 산정)

  • Chae, Sooho;Kim, Minsu;Back, In-Chul;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2022
  • Installing Continuous Welded Rail (CWR) is one of the economical ways to resolve the challenges of noise, vibration, and the open-deck steel railway bridge impact, and the SSF method using the interlocking sleeper fastener has recently been developed. In this study, the method employed for determining the optimum vertical stiffness of the sleeper pad installed under the bridge sleeper, which is utilized to adjust the rail height and absorb shock when the train passes when the interlocking sleeper fastener is applied, is presented. To determine the optimal vertical stiffness of the sleeper pad, related existing design codes are reviewed, and, running safety, ride comfort, track safety, and bridge vibration according to the change in the vertical stiffness of the sleeper pad are estimated via flexible multi-body dynamic analysis,. The flexible multi-body dynamic analysis is performed using commercial programs ABAQUS and VI-Rail. The numerical analysis is conducted using the bridge model for a 30m-long plate girder bridge, and the response is calculated when passing ITX Saemaeul and KTX vehicles and freight wagon when the vertical stiffness of the sleeper pad is altered from 7.5 kN/mm to 240 kN/mm. The optimum stiffness of the sleeper pad is calculated as 200 kN/mm under the conditions of the track components applied to the numerical analysis.

Parametric Study about Real Train Loading to Investigate Lateral Dynamic Characteristics of Steel Plate Girder Bridge (무도상 판형교의 횡거동 분석을 위한 주행하중 매개변수 연구)

  • Kim, Hyun-Min;Oh, Ji-Taek;Lee, So-Jin
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.472-476
    • /
    • 2003
  • A real train load fluctuates along the track because of complicated movements(Bouncing, Rolling, Pitching and Yawing) and rail conditions. This research has for its object in development of a numerical train load model including fluctuation characteristics of lateral forces. It is based on Klingel movement theory of a wheelset on straight track. it presents a propriety of application by comparison between a 3D-Numerical analysis result using this train load model and a measured data. And this paper presents further study subject to improve a method about the train load modeling.

  • PDF

A Study on the Fatigue Crack at Welded Joint for Steel Plate Girder Railway Bridge (강철도 플레이트거더교 용접이음부 피로균열의 평가에 관한 연구)

  • Park, Jin-Eun;Kyung, Kab-Soo;Lee, Sung-Jin;Jo, Yun-Jae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.306-309
    • /
    • 2010
  • 강철도 플레이트거더교의 경우 일반적으로 레일의 폭보다 거더 사이의 폭이 넓기 때문에 거더에 편심이 작용하게 된다. 이러한 편심 영향으로 거더 내측 상부플랜지에 휨변형이 일어나게 되어, 상부플랜지와 수직보강재 용접이음부에 반복하중에 의한 피로균열이 발생되고 있는 것으로 보고되고 있다. 본 연구에서는 공용중인 강철도 플레이트거더교를 대상교량으로 하여 공용하중에 대한 구조해석을 실시하였다. 대상교량에 대한 현장계측을 기초로 구조모델링을 검증하였고, 검증된 구조모델링을 사용하여 열차하중 하에서의 상부플랜지와 수직보강재 용접연결부에서의 피로균열 보강방안에 대한 구조해석을 실시하였다. 또한 상부플랜지와 수직보강재 용접이음부 상세해석을 통하여 피로균열 발생위치를 확인하고 연결이음부의 적절한 보강방안을 제시하고자 한다.

  • PDF

A Study on Analysis of Real Response of Steel Railway Bridges (강철도교의 실응답해석에 관한 연구)

  • Chang, Dong Il;Choi, Kang Hee;Lee, Hee Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.43-54
    • /
    • 1989
  • In this paper, measured and calculated responses are compared in order to give how the static and dynamic responses occurred in steel railway bridges due to train loads could be calculated appropriately. From this, it is investigated how the impact factors are varied by changing the train speed above 100km/h Field measurement is carried out by the steel strain gages and displacement transducers at the main design points, and then the static and dynamic response, fundamental frequencies, damping ratios and impact factors of the bridges are obtained. Static analysis is done using the computer program developed according to three dimensional matrix structural analysis in which the trains and bridges are modelled as 1,2 and 3 dimensions. Dynamic analysis is done according to 2 approaches, the moving force and mass problem. In moving force problem, the solutions are obtained by the modesuperposition-method and in moving mass problem by the direct integration method. From this study, it is known that in order to obtain the static response in the railway bridges, the bridge could be modelled by 1 or 2 dimension as in the highway bridge, however the response ratio(measured/calculaled) is high comparing to the highway bridges. By the way, the dynamic response should be obtained by the moving mass problem. And by comparing the measured and code specified impact factors, it is known that the factors specified in the present railway bridge code are very safe under the present service speed below 100km/h. However, because the factors become very high under the speed above 100km/h, especially in the simple plate girder bridge, it is thought that the code specification on impact factor should be discussed enough under the rapid transit system.

  • PDF

The Effect and Countermeasures of the Vertical Track Settlement Caused by Expand and Contract Behavior of the High-Speed Railway Bridge Girder (고속철도 교량 바닥판의 온도신축작용이 궤도처짐에 미치는 영향과 대책에 관한 연구)

  • Kang, Kee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.673-679
    • /
    • 2005
  • According to continuous welded rails on a bridge, temperature changes bring about the expansion of the bridge deck,adding axial forces on the track. Moreover, the ballast on the bridge deck expansion joint is moved due to the bridge deck. The longer the bridge deck is, the greater the influence will be, loosening the ballast, causing track irregularities, and deteriorating passenger comfort. Considering the structure of the bridge itself and tolerance for track irregularities caused by the loosened ballast on the bridge, the maximum length of the deck should be less than 80 m, which is the same as the standard of French railways. In this study, the interaction between the expansion related to the bridge length and the irregularity in the longitudinal level, referring to measurements and maintenance work performed in high-speed railways, was analyzed. This research shows that the installation of a sliding plate or a vertical ballast stopper is not a good option, since it is difficult. On the other hand, the installation of a ZLR fastener or gluing is easy, but its influence is insignificant. In conclusion, switch tie tamping or manual tamping is more effective than other methods of what?