• Title/Summary/Keyword: steel moment resisting frames

Search Result 203, Processing Time 0.026 seconds

Seismic retrofitting of steel moment-resisting frames (SMRFs) using steel pipe dampers

  • Ali Mohammad Rousta
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • The use of steel pipe dampers (SPD) as fuses or interchangeable elements in the steel moment-resisting frames (MRF) is one of the newest methods for improving seismic performance. In the present study, the performance of steel pipe dampers in MRF has been investigated. Evaluation of MRF with and without SPD models were performed using the finite element method by ABAQUS. For validation, an MRF and MRF with steel pipe dampers were modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The behavior of these dampers in frames of 3, 6, and 9 stories was studied by modeling the damper directly. Nonlinear time history dynamic analysis was used. It was observed that by increasing the number of stories in the buildings, steel pipe dampers should be used to perform properly against earthquakes. The installation of steel pipe dampers in steel moment-resisting frames shows that the drift ratio between the floors is reduced and the seismic performance of these frames is improved.

Effect of semi-rigid connections in improvement of seismic performance of steel moment-resisting frames

  • Feizi, M. Gholipour;Mojtahedi, A.;Nourani, V.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.467-484
    • /
    • 2015
  • Seismic performances of dual steel moment-resisting frames with mixed use of rigid and semi-rigid connections were investigated to control of the base shear, story drifts and the ductility demand of the elements. To this end, nonlinear seismic responses of three groups of frames with three, eight and fifteen story were evaluated. These frames with rigid, semi-rigid and combined configuration of rigid and semi-rigid connections were analyzed under five earthquake records and their responses were compared in ultimate limit state of rigid frame. This study showed that in all frames, it could be found a state of semi-rigidity and connections configuration which behaved better than rigid frame, with consideration of the base shear and story drifts criterion. Finally, some criteria were suggested to locate the best place of the semi-rigid connections for improvement of the seismic performance of steel moment-resisting frames.

Performance Evaluation of Steel Moment Resisting Frames with Seismic Retrofit Using Fragility Contour Method (내진 보강된 철골모멘트골조의 취약성 등고선을 통한 성능평가)

  • Kim, Su Dong;Lee, Kihak;Jeong, Seong-Hoon;Kim, Do Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.33-41
    • /
    • 2013
  • Due to a high level of system ductility, steel moment resisting frames have been widely used for lateral force resisting structural systems in high seismic zones. Earthquake field investigations after Northridge earthquake in 1994 and Kobe earthquake in 1995 have reported that many steel moment resisting frames designed before 1990's had suffered significant damages and structural collapse. In this research, seismic performance assessment of steel moment resisting frames designed in accordance with the previous seismic provisions before 1990's was performed. Buckling-restrained braces and shear walls are considered for seismic retrofit of the reference buildings. Increasing stiffness and strength of the buildings using buckling-restrained braces and shear walls are considered as options to rehabilitate the damaged buildings. Probabilistic seismic performance assessment using fragility analysis results is used for the criteria for determining an appropriate seismic retrofit strategy. The fragility contour method can be used to provide an intial guideline to structural engineers when various structural retrofit options for the damaged buildings are available.

Earthquake Response Analysis of Ordinary Moment Resisting Steel Frames (일반 모멘트 저항 철골조의 지진 응답 해석)

  • Yoon, Myung-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.4 no.1
    • /
    • pp.36-45
    • /
    • 2004
  • Allowable stress design method have been most widely used in steel structure in Korea. Recently, not only high-rise buildings but also medium or low-rise buildings were designed as steel structure. Most of low-rise steel buildings are designed as ordinary moment resisting frames(MRF). But MRFs don't have any lateral force resisting devices such as bracing in braced frames. This study focuses mainly on nonlinear seismic response analyses of small scale steel frames which will be used later as specimens for the evaluation of MRF's seismic performances. The main parameters of analyses are arrangement of column axis, $P-{\Delta}$ effect, acceleration factor etc. The object of this paper is to estimate the seismic performances of MRFs, which are mostly designed in Korea, through the results of response analyses.

  • PDF

Hysteretic Energy Characteristics of Steel Moment Frames Under Strength Variations

  • Choi, Byong Jeong;Kim, Duck Jae
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.61-69
    • /
    • 2000
  • This research focused on the hysteretic energy performance of 12 steel moment-resisting frames, which were intentionally designed by three types of design philosophies, strength control design, strength and drift control design, and strong-column and weak-beam control design. The energy performances of three designs were discussed In view of strength increase effect, stiffness increase effect, and strong-column and weak-beam effects. The mean hysteretic energy of the 12 basic systems were statically processed and compared to that of single-degree-of-freedom systems. Hysteretic energy was not always increased with an increase of strength and stiffness in the steel moment-resisting frames. Hysteretic energy between strong-column and weak-beam design and drift control design with the same stiffness was not sensitive each other for these types of mid-rises of steel moment-resisting frames.

  • PDF

Improved seismic performance of steel moment frames using rotational friction dampers

  • Ali Banazadeh;Ahmad Maleki;Mohammad Ali Lotfollahi Yaghin
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.223-234
    • /
    • 2023
  • The use of displacement-dependent rotational friction dampers (RFD) as fuses or interchangeable elements in the moment-resisting frames (MRF) is one of the newest methods for improving seismic performance. In the present study, the performance of rotational friction dampers in MRF has been investigated. Evaluation of MRF with and without RFD models was performed using the finite element method by ABAQUS. For validation, an MRF and MRF with rotational friction dampers were modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The behavior of these dampers in frames of 3-, 6-, and 9-story was studied by modeling the damper directly. Nonlinear time history dynamic analysis was used. It was observed that by increasing the number of stories in the buildings, rotational friction dampers should be used to perform properly against earthquakes. The installation of rotational friction dampers in steel moment-resisting frames shows that the drift ratio between the floors is reduced and the seismic performance of these frames is improved.

The Seismic Response Evaluation of Ordinary Moment Resisting Steel Frames (철골 보통모멘트골조의 지진응답평가)

  • 이준석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.233-238
    • /
    • 2000
  • The purpose of this study is to outline the analysis procedure for evaluating the performance of moment resisting steel frames. For this purpose, three ordinary moment resisting frames are designed in compliance to UBC 1994. The evaluation is performed by nonlinear static procedures using two analytical models. Only one analytical model using panel element can reflect the panel zone deformation explicitly. The limit values in FEMA 273 are used as guidelines of predicted demand parameters by which the performance of OMRFs may be assessed.

  • PDF

Design parameter dependent force reduction, strength and response modification factors for the special steel moment-resisting frames

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.273-290
    • /
    • 2011
  • In current ductility-based earthquake-resistant design, the estimation of design forces continues to be carried out with the application of response modification factors on elastic design spectra. It is well-known that the response modification factor (R) takes into account the force reduction, strength, redundancy, and damping of structural systems. The key components of the response modification factor (R) are force reduction ($R_{\mu}$) and strength ($R_S$) factors. However, the response modification and strength factors for structural systems presented in design codes were based on professional judgment and experiences. A numerical study has been accomplished to evaluate force reduction, strength, and response modification factors for special steel moment resisting frames. A total of 72 prototype steel frames were designed based on the recommendations given in the AISC Seismic Provisions and UBC Codes. Number of stories, soil profiles, seismic zone factors, framing systems, and failure mechanisms were considered as the design parameters that influence the response. The effects of the design parameters on force reduction ($R_{\mu}$), strength ($R_S$), and response modification (R) factors were studied. Based on the analysis results, these factors for special steel moment resisting frames are evaluated.

Seismic performance evaluation of steel moment resisting frames with mid-span rigid rocking cores

  • Ali Akbari;Ali Massumi;Mark Grigorian
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.621-635
    • /
    • 2023
  • The combination of replaceable and repairable properties in structures has introduced new approach called "Low Damage Design Structures". These structural systems are designed in such a way that through self-centering, primary members and specific connections neither suffer damage nor experience permanent deformations after being exposed to severe earthquakes. The purpose of this study is the seismic assessment of steel moment resisting frames with the aid of rigid rocking cores. To this end, three steel moment resisting frames of 4-, 8-, and 12-story buildings with and without rocking cores were developed. The nonlinear static analysis and incremental dynamic analysis were performed by considering the effects of the vertical and horizontal components of 16 strong ground motions, including far-fault and near-fault arrays. The results reveal that rocking systems benefit from better seismic performance and energy dissipation compared to moment resisting frames and thus structures experience a lower level of damage under higher intensity measures. The analyses show that the interstory drift in structures equipped with stiff rocking cores is more uniform in static and dynamic analyses. A uniform interstory drift distribution leads to a uniform distribution of the bending moment and a reduction in the structure's total weight and future maintenance costs.

Moment resisting steel frames under repeated earthquakes

  • Loulelis, D.;Hatzigeorgiou, G.D.;Beskos, D.E.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.231-248
    • /
    • 2012
  • In this study, a systematic investigation is carried out on the seismic behaviour of plane moment resisting steel frames (MRF) to repeated strong ground motions. Such a sequence of earthquakes results in a significant damage accumulation in a structure because any rehabilitation action between any two successive seismic motions cannot be practically materialised due to lack of time. In this work, thirty-six MRF which have been designed for seismic and vertical loads according to European codes are first subjected to five real seismic sequences which are recorded at the same station, in the same direction and in a short period of time, up to three days. Furthermore, the examined frames are also subjected to sixty artificial seismic sequences. This investigation shows that the sequences of ground motions have a significant effect on the response and, hence, on the design of MRF. Additionally, it is concluded that ductility demands, behaviour factor and seismic damage of the repeated ground motions can be satisfactorily estimated using appropriate combinations of the corresponding demands of single ground motions.