• Title/Summary/Keyword: steel moment frames

Search Result 390, Processing Time 0.02 seconds

Simplified Nonlinear Static Progressive Collapse Analysis of Steel Moment Frames (철골모멘트골조의 비선형 정적 연쇄붕괴 근사해석)

  • Lee, Cheol-Ho;Kim, Seon-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.698-703
    • /
    • 2007
  • A simplified model which incorporates the moment-axial tension interaction of the double-span beams in a column-removed steel frame is presented in this paper. To this end, material and geometric nonlinear parametric finite element analyses were conducted for the double-span beams by changing the beam span to depth ratio and the beam size within some practical ranges. The beam span to depth ratio was shown to be the most influential factor governing the catenary action of the double-span beams. Based on the parametric analysis results, a simplified piecewise linear model which can reasonably describe the vertical, resisting force versus the beam chord rotation relationship was proposed. It was also shown that the proposed method can readily be used for the energy-based progressive collapse analysis of steel moment frames.

  • PDF

Seismic behavior investigation of the steel multi-story moment frames with steel plate shear walls

  • Mansouri, Iman;Arabzadeh, Ali;Farzampour, Alireza;Hu, Jong Wan
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.91-98
    • /
    • 2020
  • Steel plate shear walls are recently used as efficient seismic lateral resisting systems. These lateral resistant structures are implemented to provide more strength, stiffness and ductility in limited space areas. In this study, the seismic behavior of the multi-story steel frames with steel plate shear walls are investigated for buildings with 4, 8, 12 and 16 stories using verified computational modeling platforms. Different number of steel moment bays with distinctive lengths are investigated to effectively determine the deflection amplification factor for low-rise and high-rise structures. Results showed that the dissipated energy in moment frames with steel plates are significantly related to the inside panel. It is shown that more than 50% of the dissipated energy under various ground motions is dissipated by the panel itself, and increasing the steel plate length leads to higher energy dissipation capability. The deflection amplification factor is studied in details for various verified parametric cases, and it is concluded that for a typical multi-story moment frame with steel plate shear walls, the amplification factor is 4.93 which is less than the recommended conservative values in the design codes. It is shown that the deflection amplification factor decreases if the height of the building increases, for which the frames with more than six stories would have less recommended deflection amplification factor. In addition, increasing the number of bays or decreasing the steel plate shear wall length leads to a reduction of the deflection amplification factor.

Evaluation of Ductility and Strength Factors for Special Steel Moment Resisting Frames (철골 연성 모멘트 골조의 연성계수 및 강도계수 평가)

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.793-805
    • /
    • 2004
  • The main objective of this paper is to evaluate the ductility and strength factors that are key components of the response modification factor for special steel moment-resistant frames. The ductility factors for special steel moment-resistant frames were calculated by multiplying the ductility factor for SDOF systems and the MDOF modification factors. Ductility factors were computed for elastic and perfectly plastic SDOF systems undergoing different levels of inelastic deformation and periods when subjected to a large number of recorded earthquake ground motions. Based on the results of the regression analysis, simplified expressions were proposed to compute the ductility factors. Based on previous studies, the MDOF modification factors were also proposed to account for the MDOF systems. Strength factors for special steel moment resisting frames were estimated from the results of the nonlinear static analysis. A total of 36 sample steel frames were designed to investigate the ductility and strength factors considering design parameters such as number of stories (4, 8, and 16 stories), seismic zone factors (Z = 0.075, 0.2, and 0.4), framing system (Perimeter Frames, PF and Distributed Frames, DF), and failure mechanism (Strong-Column Weak Beam, SCWB, and Weak-Column Strong-Beam, WCSB). The effects of these design parameters on the ductility and strength factors for special steel moment-resisting frames were investigated.

Seismic performance evaluation of steel moment resisting frames with mid-span rigid rocking cores

  • Ali Akbari;Ali Massumi;Mark Grigorian
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.621-635
    • /
    • 2023
  • The combination of replaceable and repairable properties in structures has introduced new approach called "Low Damage Design Structures". These structural systems are designed in such a way that through self-centering, primary members and specific connections neither suffer damage nor experience permanent deformations after being exposed to severe earthquakes. The purpose of this study is the seismic assessment of steel moment resisting frames with the aid of rigid rocking cores. To this end, three steel moment resisting frames of 4-, 8-, and 12-story buildings with and without rocking cores were developed. The nonlinear static analysis and incremental dynamic analysis were performed by considering the effects of the vertical and horizontal components of 16 strong ground motions, including far-fault and near-fault arrays. The results reveal that rocking systems benefit from better seismic performance and energy dissipation compared to moment resisting frames and thus structures experience a lower level of damage under higher intensity measures. The analyses show that the interstory drift in structures equipped with stiff rocking cores is more uniform in static and dynamic analyses. A uniform interstory drift distribution leads to a uniform distribution of the bending moment and a reduction in the structure's total weight and future maintenance costs.

Simplified Nonlinear Dynamic Progressive Collapse Analysis of Welded Steel Moment Frames Using Collapse Spectrum (붕괴스펙트럼을 활용한 용접철골모멘트골조의 비선형 동적 연쇄붕괴 근사해석)

  • Lee, Cheol Ho;Kim, Seon Woong;Lee, Kyung Koo;Han, Kyu Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.267-275
    • /
    • 2009
  • This paper presents the behavior of column-removed double-span beams in welded steel moment frames and proposes a simplified nonlinear dynamic analysis method for the preliminary evaluation of progressive collapse potential. The nonlinear finite element analysis and the associated analytical study showed that the column gravity load and the beam span-to-depth ratio govern the maximum dynamic deformation demand of the double-span beams. Based on these results, the concept of a collapse spectrum, which describes the relationship between the gravity load parameter and the maximum chord rotation of the double-span beams, was newly proposed. A procedure for the application of the collapse spectrum to multi-story welded steel moment frames was then suggested. The inelastic dynamic finite element analysis results showed that the proposed method gives satisfactory prediction of the nonlinear progressive collapse behavior of welded steel moment frames.

Seismic Performance of High-Rise Intermediate Steel Moment Frames according to Rotation Capacities of Moment Connections

  • Han, Sang Whan;Moon, Ki-Hoon;Ha, Sung Jin
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • The rotation capacity of the moment connections could significantly influence on the seismic performance of steel moment resisting frames. Current seismic provisions require that beam-to-column connections in Intermediate Moment Frames (IMF) should have a drift capacity as large as 0.02 radian. The objective of this study was to evaluate the effect of the rotation capacity of moment connections on the seismic performance of high-rise IMFs. For this purpose, thirty- and forty-story high-rise IMFs were designed according to the current seismic design provisions. The seismic performance of designed model frames was evaluated according to FEMA P695. This study showed that the forty-story IMF satisfied the seismic performance objective specified in FEMA P695 when the rotation capacity of the connections was larger than 0.02. However, thirty-story IMFs satisfied the performance objective when the connection rotation capacity is larger than 0.03.

Development of ensemble machine learning models for evaluating seismic demands of steel moment frames

  • Nguyen, Hoang D.;Kim, JunHee;Shin, Myoungsu
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.49-63
    • /
    • 2022
  • This study aims to develop ensemble machine learning (ML) models for estimating the peak floor acceleration and maximum top drift of steel moment frames. For this purpose, random forest, adaptive boosting, gradient boosting regression tree (GBRT), and extreme gradient boosting (XGBoost) models were considered. A total of 621 steel moment frames were analyzed under 240 ground motions using OpenSees software to generate the dataset for ML models. From the results, the GBRT and XGBoost models exhibited the highest performance for predicting peak floor acceleration and maximum top drift, respectively. The significance of each input variable on the prediction was examined using the best-performing models and Shapley additive explanations approach (SHAP). It turned out that the peak ground acceleration had the most significant impact on the peak floor acceleration prediction. Meanwhile, the spectral accelerations at 1 and 2 s had the most considerable influence on the maximum top drift prediction. Finally, a graphical user interface module was created that places a pioneering step for the application of ML to estimate the seismic demands of building structures in practical design.

Experimental evaluation on the seismic performance of steel knee braced frame structures with energy dissipation mechanism

  • Hsu, H.L.;Juang, J.L.;Chou, C.H.
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.77-91
    • /
    • 2011
  • This study experimentally evaluated the seismic performance of steel knee braced frame structures with energy dissipation mechanism. A series of cyclic load tests were conducted on the steel moment resisting frames and the proposed knee braced frames. Test results validated that the demand in the beam-to-column connection designs was alleviated by the proposed design method. Test results also showed that the strength and stiffness of the proposed design were effectively enhanced. Comparisons in energy dissipation between the steel moment resisting frames and the steel knee braced frames further justified the applicability of the proposed method.

Strengthening of the panel zone in steel moment-resisting frames

  • Abedini, Masoud;Raman, Sudharshan N.;Mutalib, Azrul A.;Akhlaghi, Ebrahim
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.327-342
    • /
    • 2019
  • Rehabilitation and retrofitting of structures designed in accordance to standard design codes is an essential practice in structural engineering and design. For steel structures, one of the challenges is to strengthen the panel zone as well as its analysis in moment-resisting frames. In this research, investigations were undertaken to analyze the influence of the panel zone in the response of structural frames through a computational approach using ETABS software. Moment-resisting frames of six stories were studied in supposition of real panel zone, different values of rigid zone factor, different thickness of double plates, and both double plates and rigid zone factor together. The frames were analyzed, designed and validated in accordance to Iranian steel building code. The results of drift values for six stories building models were plotted. After verifying and comparing the results, the findings showed that the rigidity lead to reduction in drifts of frames and also as a result, lower rigidity will be used for high rise building and higher rigidity will be used for low rise building. In frames with story drifts more than the permitted rate, where the frames are considered as the weaker panel zone area, the story drifts can be limited by strengthening the panel zone with double plates. It should be noted that higher thickness of double plates and higher rigidity of panel zone will result in enhancement of the non-linear deformation rates in beam elements. The resulting deformations of the panel zone due to this modification can have significant influence on the elastic and inelastic behavior of the frames.

Seismic Performance Evaluation According to Rotation Capacity of Connections for Intermediate Steel Moment Frames - I. Performance Evaluation (접합부 회전성능에 따른 중간 철골 모멘트 골조의 내진 성능 평가 - I 성능평가)

  • Moon, Ki Hoon;Han, Sang Whan;Ha, Seung Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.95-103
    • /
    • 2014
  • The current AISC341-10 standard specifiesa value of 0.02 radian for the minimum rotation capacity of connections for the intermediate steel moment frame system. However, despite of the advances realized in the domains of performance evaluation method and analysis method, research onthe minimum rotation capacity of the intermediate steel moment frame systemsatisfying the seismic performance has not been conducted in detail. In this study, the intermediate moment frame systemisdesigned with respect to current standards and the seismic performance in accordance with the rotational capacity of connections is evaluated using the seismic performance evaluation method presented in FEMA-P695. The minimum rotation capacity of intermediate steel moment frames required to satisfy seismic performance as well as the major design values affecting the seismic performance of moment frame areestimated. To that goal, the design parameters are selected and various target frames are designed. The analysis models of the main nonlinear elements are also developed for evaluating seismic performance. The resultsshow that the 20-story structure doesnot meet the seismic performance even if it satisfies the rotation capacity of 0.02 radian.