• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.029 seconds

Global seismic performance of a new precast CFST column to RC beam braced frame: Shake table test and numerical study

  • Xu, S.Y.;Li, Z.L.;Liu, H.J.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.805-827
    • /
    • 2016
  • A new type of precast CFST column to RC beam braced frame is proposed in this paper. A series of shake table tests were conducted to excite a one-third scale six-story model for investigating the global seismic performance of this type of structure against earthquake actions. Particular emphasis was given to its dynamic property, global seismic responses and failure path. Correspondingly, a numerical model built on the basis of fiber-beam-element model, multi-layer shell model and element-deactivation method was developed to simulate the seismic performance of the prototype structure. Numerical results were compared with the measured values from shake table tests to verify the validity and reliability of the numerical model. The results demonstrated that the proposed novel precast CFST column to RC beam braced frame performs excellently under strong earthquake excitations; the "strong CFST column-weak RC beam" and "strong connection-weak member" anti-seismic design principles can be easily achieved; the maximum deflections of precast CFSTC-RCB braced frame satisfied the deflection limitations proposed in national code; the numerical model can properly simulate the dynamic property and responses of the precast CFSTC-RCB braced frame that are highly concerned in engineering practice.

Description of Hysteresis Loops using Modified Overlay Model (수정 다층 모델을 이용한 이력곡선의 묘사)

  • Yoon, Sam-Son;Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1856-1863
    • /
    • 2003
  • Overlay model had several advantages to describe hysteretic behavior of material and showed good capability for many engineering materials. However, this model is only applicable to material obeying Masing postulate. Some materials such as 316L stainless steel do not follow Masing postulate and show cyclic hardening(or softening) and strain range dependence. Low cycle fatigue tests of 316L stainless steel at 600$^{\circ}C$ were performed to investigate the characteristics of cyclic behavior of non-Masing material. From all tests cyclic softening was observed. There were differences in elastic limit of hysteresis loop according to applied strain range. To consider these features, modified overlay model was developed. Yield stresses of subelements were divided into isotropic and anisotropic part to describe the non-Masing behavior. The plastic strain range memorization was introduced to consider the strain range dependence. The prediction using modified overlay model showed a good accordance to actual hysteresis loops.

Representation of Structural Surface for Hull Modeling (선체모델링에 있어서 구조면의 정의 및 표현)

  • Kwang-Wook Kim;Won-Don Kim;Jong-Ho Nam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.30-37
    • /
    • 1992
  • Since a ship is a complex steel construction which consists of sculptured surfaces and inner surface members, a high technique of information modeling is indispensable to describe the form of hull surface and steel structure members consistently. A model contains both topological and geometrical information of the structural members. Therefore, the hull form should be represented by the wireframe of surface model so that the accuracy in each design stage is satisfied. The structural members like plane surfaces, stiffeners and the relations between such members are to be described systematically in data base. A collection of the data stored in database is a model to be built. The model will be used not only to generate the drawings and documents for ship design and production but also to interconnect other systems such as compartmentation, outfitting, piping, etc. Computer graphics is adopted of the visualization of model.

  • PDF

Numerical Calculation of Transformation Plasticity Using a FE Analysis Coupled with n Phase Field Model (상장모델과 유한요소법의 연계해석을 통한 변태소성 전산모사)

  • Cho, Y.G.;Kim, J.Y.;Cha, P.R.;Lee, J.K.;Han, H.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.318-321
    • /
    • 2009
  • Transformation plasticity is that when a phase transformation of ferrous or non-ferrous alloys progresses even under an extremely small applied stress compared with a yield stress of the material, a permanent deformation occurs. One of widely accepted description for the transformation was proposed by Greenwood and Johnson [1]. Their description is based on an assumption that a weaker phase of an ideal plastic material could deform plastically to accommodate the externally applied stress and the internal stress caused by the volumetric change accompanying the phase transformation. In this study, an implicit finite element model was developed to simulate the deformation behavior of a low carbon steel during phase transformation. The finite element model was coupled with a phase field model, which could simulate the kinetics for ferrite to austenite transformation of the steel. The thermo-elasto-plastic constitutive equation for each phase was adopted to confirm the weaker phase yielding, which was proposed by Greenwood and Johnson [1]. From the simulation, the origin of the transformation plasticity was quantitatively discussed comparing with the other descriptions of it.

  • PDF

A Study on Nonlinear Behavior of RC Structure using Different Crack Models (균열모델을 사용한 철근콘크리트 구조물의 비선형거동 해석에 관한 연구)

  • Kim, Sung-Chil;Ahn, Young-Ki;Park, Sung-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.139-146
    • /
    • 2002
  • A analysis of crack behavior in RC member was performed by nonlinear finite element method. Two crack models were used in F.E.M.(finite element method): one was FCM (the fixed crack model) and the other was RCM (the rotated crack model). Based on parametric study, the ratio of shear steel, strength of concrete, and a/d(shear span/effective depth) were compared with test results of references. According to the test results, when the member behavior was affected by the shear or diagonal tension, RCM was reasonable. However, when the behavior was affected by the flexibility, FCM was more appropriate. In addition, each crack model behavior for the change of shear steel ratio, the increase of strain energy was constant in FCM, but it was different in RCM because of diagonal crack distribution and crack width. Since the strength of concrete is affected not only by shear but also by flexural strength, each crack model behavior yields similar results.

Application of ANFIS to the design of elliptical CFST columns

  • Ngoc-Long Tran;Trong-Cuong Vo;Duy-Duan Nguyen;Van-Quang Nguyen;Huy-Khanh Dang;Viet-Linh Tran
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.147-177
    • /
    • 2023
  • Elliptical concrete-filled steel tubular (CFST) column is widely used in modern structures for both aesthetical appeal and structural performance benefits. The ultimate axial load is a critical factor for designing the elliptical CFST short columns. However, there are complications of geometric and material interactions, which make a difficulty in determining a simple model for predicting the ultimate axial load of elliptical CFST short columns. This study aims to propose an efficient adaptive neuro-fuzzy inference system (ANFIS) model for predicting the ultimate axial load of elliptical CFST short columns. In the proposed method, the ANFIS model is used to establish a relationship between the ultimate axial load and geometric and material properties of elliptical CFST short columns. Accordingly, a total of 188 experimental and simulation datasets of elliptical CFST short columns are used to develop the ANFIS models. The performance of the proposed ANFIS model is compared with that of existing design formulas. The results show that the proposed ANFIS model is more accurate than existing empirical and theoretical formulas. Finally, an explicit formula and a Graphical User Interface (GUI) tool are developed to apply the proposed ANFIS model for practical use.

A TSK fuzzy model optimization with meta-heuristic algorithms for seismic response prediction of nonlinear steel moment-resisting frames

  • Ebrahim Asadi;Reza Goli Ejlali;Seyyed Arash Mousavi Ghasemi;Siamak Talatahari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.189-208
    • /
    • 2024
  • Artificial intelligence is one of the efficient methods that can be developed to simulate nonlinear behavior and predict the response of building structures. In this regard, an adaptive method based on optimization algorithms is used to train the TSK model of the fuzzy inference system to estimate the seismic behavior of building structures based on analytical data. The optimization algorithm is implemented to determine the parameters of the TSK model based on the minimization of prediction error for the training data set. The adaptive training is designed on the feedback of the results of previous time steps, in which three training cases of 2, 5, and 10 previous time steps were used. The training data is collected from the results of nonlinear time history analysis under 100 ground motion records with different seismic properties. Also, 10 records were used to test the inference system. The performance of the proposed inference system is evaluated on two 3 and 20-story models of nonlinear steel moment frame. The results show that the inference system of the TSK model by combining the optimization method is an efficient computational method for predicting the response of nonlinear structures. Meanwhile, the multi-vers optimization (MVO) algorithm is more accurate in determining the optimal parameters of the TSK model. Also, the accuracy of the results increases significantly with increasing the number of previous steps.

Atmospheric Corrosion Model of Carbon Steel Considering Relative Humidity, Chloride Deposition Rate, and Surface Particles (상대 습도, 염화물 누적률, 표면 입자를 고려한 탄소강의 대기부식 모델)

  • Jinsoo Shin;Hyeok-Jun Kwon;Hongseok Kim;Dooyoul Lee
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.324-333
    • /
    • 2024
  • Atmospheric corrosion poses a significant threat to durability of metallic materials and safety of structures, making precise prediction of corrosion rates crucial in industrial and engineering settings. Understanding the exact rate of corrosion is essential. However, accurate inclusion of various environmental factors that can influence atmospheric corrosion in the calculation of corrosion rate is a complex challenge. This study introduces a physics-based model that incorporates electrochemical methods and considers active surface area affected by surface contaminants to estimate atmospheric corrosion rate of carbon steel. The model can evaluate corrosion levels using key factors such as chloride deposition rate, relative humidity, and the presence of surface particles. By integrating these considerations, this model moves beyond empirical estimations, providing a more stable prediction of corrosion rate that is less susceptible to environmental variations. This model provides a robust tool for defense applications, offering precise insights into the dynamics of atmospheric corrosion that could enhance the maintenance and safety of weapon systems.

Reliability Assessment of Reinforced Concrete Beams Strengthened by CFRP Laminates (CFRP 적층판으로 보강된 철근콘크리트보의 신뢰성평가)

  • 조효남;최영민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.160-166
    • /
    • 1994
  • In general, the problems of strengthening and repairing of deteriorated or damaged reinforced concrete members are usually worked out in situ by externally bounding steel plates using epoxy resins, which has been recognized to be one of effective and convenient methods. But the disadvantages of strengthening/repairing concrete members with externally bonded steel plates include ; (a) deterioration of the bond at the steel-concrete interface caused by the corrosion of steel ; (b) difficulty in manipulating the plate at the construction site ; (c) improper formation of joints, due to the limited delivery lengths of the steel plates ; and etc. Therefore these difficulties eventually have led to the concept of replacing the steel plates by fiber-reinforced composite sheets which are characterized by their light weight, extremely high stiffness, excellent fatigue properties, and outstanding corrosion resistance. In the paper, for the reliability assessment of reinforced concrete beams externally strengthened by carbon fiber plastic(CFRP) laminates, an attempt is made to suggest a limit state model based on the strain compatibility method and the concept of fracture mechanics. And the reliability of the proposed models is evaluated by using the AFOSM method. The load carrying capacity of the deteriorated and/or damaged RC beams is considerably increased. Thus, it may be stated that the post-strengthening of concrete beams with externally bonded CFRP materials may be one of very effective way of increasing the load carrying capacity and stiffeness characteristics of existing structures.

  • PDF

Effective flexural rigidities for RC beams and columns with steel fiber

  • Bengar, Habib Akbarzadeh;Kiadehi, Mohammad Asadi;Shayanfar, Javad;Nazari, Maryam
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.453-465
    • /
    • 2020
  • Influences of different variables that affect the effective flexural rigidity of reinforced concrete (RC) members are not considered in the most seismic codes. Furthermore, in the last decades, the application of steel fibers in concrete matrix designs has been increased, requiring development of an accurate analytical procedure to calculate the effective flexural rigidity of steel fiber reinforced concrete (SFRC) members. In this paper, first, a nonlinear analytical procedure is proposed to calculate the SFRC members' effective flexural rigidity. The proposed model's accuracy is confirmed by comparing the results obtained from nonlinear analysis with those recorded from the experimental testing. Then a parametric study is conducted to investigate the effects of different parameters such as varying axial load and steel fiber are then investigated through moment-curvature analysis of various SFRC (normal-strength concrete) sections. The obtained results show that increasing the steel fiber volume percentage increases the effective flexural rigidity. Also it's been indicated that the varying axial load affects the effective flexural rigidity. Lastly, proper equations are developed to estimate the effective flexural rigidity of SFRC members.