• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.034 seconds

A Study on the Affection of Frequency and Displacement for Nonlinear Viscoelastic Bushing Model (비선형 점탄성 부싱모델에 대한 주파수와 변위의 영향에 대한 연구)

  • Lee, Seong-Beom
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.474-478
    • /
    • 2004
  • A bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. A force-displacement relation for bushings is important for multibody dynamics numerical simulations. For the nonlinear viscoelastic axial response, Pipkin-Rogers model, the direct relation of force and displacement, has been derived from Lianis model and the sinusoidal input was used for Pipkin-Rogers model, and the affection of displacement with frequency change was studied with Pipkin-Rogers model.

  • PDF

A constitutive model for confined concrete in composite structures

  • Shi, Qing X.;Rong, Chong;Zhang, Ting
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.689-695
    • /
    • 2017
  • The constitutive relation is an important factor in analysis of confined concrete in composite structures. In order to propose a constitutive model for nonlinear analysis of confined concrete, lateral restraint mechanism of confined concrete is firstly analyze to study the generalities. As the foundation of the constitutive model, peak stress and peak strain is the first step in research. According to the generalities and the Twin Shear Unified Strength Theory, a novel unified equation for peak stress and peak strain are established. It is well coincident with experimental results. Based on the general constitutive relations and the unified equation for peak stress and peak strain, we propose a unified and convenient constitutive model for confined concrete with fewer material parameters. Two examples involved with steel tube confined concrete and hoop-confined concrete are considered. The proposed constitutive model coincides well with the experimental results. This constitutive model can also be extended for nonlinear analysis to other types of confined concrete.

Modelling and Analysis of Roll-Type Steel Mats for Rapid Stabilization of Permafrost (I) - Modeling - (영구동토 급속안정화를 위한 롤타입강재매트의 모델링과 해석(I) - 해석모델의 수립 -)

  • Moon, Do Young;Kang, Jae Mo;Lee, Janggeun;Lee, Sang Yoon;Zi, Goangseuo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.97-107
    • /
    • 2014
  • Finite element modelling and analysis were conducted for the roll-type steel mats which were placed on loose sand and subjected to a standard truck wheel load in this study. The roll-type steel mats mean that the steel mats can be folded as a circle shape for the carrying to fields in cold regions where workability is limited and are developed for a rapid rehabilitation method for roadway across soft ground which is caused by thawing during the summer season in cold regions. The model is composed of link elements to simulate nonlinear behavior of connections between steel mats, thick shell elements to have flexural stiffness of the steel mats, and springs to simulate characteristics of foundation soils. The structural behaviors of the shell, link elements, and springs were verified at each modelling step through experiment and analysis. Beam and shell analysis without the link elements were conducted and compared to results obtained from the model presented in this study. Significant vertical displacement is shown in the shell model with hinge connections. Therefore, the results demonstrate that the analysis model for the roll-type steel mats on loose sand needs further detail parametric studies.

Experimental and numerical study on shear studs connecting steel girder and precast concrete deck

  • Xia, Ye;Chen, Limu;Ma, Haiying;Su, Dan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.433-444
    • /
    • 2019
  • Shear studs are often used to connect steel girders and concrete deck to form a composite bridge system. The application of precast concrete deck to steel-concrete composite bridges can improve the strength of decks and reduce the shrinkage and creep effect on the long-term behavior of structures. How to ensure the connection between steel girders and concrete deck directly influences the composite behavior between steel girder and precast concrete deck as well as the behavior of the structure system. Compared with traditional multi-I girder systems, a twin-I girder composite bridge system is more simplified but may lead to additional requirements on the shear studs connecting steel girders and decks due to the larger girder spacing. Up to date, only very limited quantity of researches has been conducted regarding the behavior of shear studs on twin-I girder bridge systems. One convenient way for steel composite bridge system is to cast concrete deck in place with shear studs uniformly-distributed along the span direction. For steel composite bridge system using precast concrete deck, voids are included in the precast concrete deck segments, and they are casted with cast-in-place concrete after the concrete segments are erected. In this paper, several sets of push-out tests are conducted, which are used to investigate the heavier of shear studs within the voids in the precast concrete deck. The test data are analyzed and compared with those from finite element models. A simplified shear stud model is proposed using a beam element instead of solid elements. It is used in the finite element model analyses of the twin-I girder composite bridge system to relieve the computational efforts of the shear studs. Additionally, a parametric study is developed to find the effects of void size, void spacing, and shear stud diameter and spacing. Finally, the recommendations are given for the design of precast deck using void for twin I-girder bridge systems.

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 2: Finite element analysis

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1001-1021
    • /
    • 2015
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1,450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. This paper investigates the structural performances of SCS sandwich composite beams with ULCC as filled material. Overlapped headed shear studs were used to provide shear and tensile bond between the face plate and the lightweight core. Three-dimensional nonlinear finite element (FE) model was developed for the ultimate strength analysis of such SCS sandwich composite beams. The accuracy of the FE analysis was established by comparing the predicted results with the quasi-static tests on the SCS sandwich beams. The FE model was also applied to the nonlinear analysis on curved SCS sandwich beam and shells and the SCS sandwich beams with J-hook connectors and different concrete core including ULCC, lightweight concrete (LWC) and normal weight concrete (NWC). Validations were also carried out to check the accuracy of the FE analysis on the SCS sandwich beams with J-hook connectors and curved SCS sandwich structure. Finally, recommended FE analysis procedures were given.

Repairability Performance and Restoring Force Characteristics of Damaged H-shaped Steel Members after Repair

  • Mori, Kenjiro;Ito, Takumi;Sato, Hanako;Munemura, Hiroka;Matsumoto, Takeshi;Choi, Changhoon
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.57-64
    • /
    • 2015
  • Recently, new keywords such as "Resilience" and "Repairability" have been discussed from the perspective of the sustainability of damaged structures after a severe disaster. To evaluate the repairability and recovery of structures, it is necessary to establish an analytical method that can simulate the behavior of repaired structures. Furthermore, it is desirable to establish an evaluation method for the structural performance of repaired structures. This study investigates the repairability and recovery of steel members that are damaged by local buckling or cracks. This paper suggests a simple analytical model for repaired steel members, in order to simulate the inelastic behavior and evaluate the recoverability of the structural performance. There is good agreement between the analytical results and the test results. The proposed analytical method and model can effectively evaluate the recoverability.

Damage Assessment of Steel Box-girder Bridge using Neural Networks (신경망을 이용한 강박스거더교의 손상평가)

  • Lee, In Won;Oh, Ju Won;Park, Sun Kyu;Kim, Ju Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.79-88
    • /
    • 1999
  • Damages of a steel box girder bridge are detected using neural networks. Damage detection using neural networks has increasing momentum in structural engineering. It is a new effort to overcome the limitations of the conventional analytical approaches and applied to the damage detection of a steel box-girder bridge. Data sets for training neural networks are obtained from the acceleration response of the bridge under moving load. Finite element model is first defined and damages of 5, 10, 15 and 20% are assumed in the model. Not only the trained damages but untrained damages are detected in the assessment stage. The untrained damages can be detected with acceptable errors. Because the number of damaged locations are limited to a few parts, more researches are needed to put this technique into practice.

  • PDF

Performance Analysis of Steel-FRP Composite Safety Barrier by Vehicle Crash Simulation (충돌 시뮬레이션을 활용한 강재-FRP 합성 방호울타리의 성능평가)

  • Lee, Min-Chul;Kwon, Ki-Young;Kim, Seung-Eock
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.11-18
    • /
    • 2011
  • In this study, the performance of a steel-FRP composite bridge safety barrier was evaluated through vehicle crash simulation. Surface veil, DB and Roving fibers were used for FRP. The MAT58 material model provided by LS-DYNA software was used to model FRP material. Spot weld option was used for modeling contact between steel and FRP beam. The structural strength performance, the passenger protection performance, and the vehicle behavior after crash were evaluated corresponding to the vehicle crash manual. As the result, A steel-FRP composite safety barrier was satisfied with the required performance.

Analysis of side-plated reinforced concrete beams with partial interaction

  • Siu, W.H.;Su, R.K.L.
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.71-96
    • /
    • 2011
  • Existing reinforced concrete (RC) beams can be strengthened with externally bolted steel plates to the sides of beams. The effectiveness of this type of bolted side-plate (BSP) beam can however be affected by partial interaction between the steel plates and RC beams due to the mechanical slip of bolts. To avoid over-estimation of the flexural strength and ensure accurate prediction of the load-deformation response of the beams, the effect of partial interaction has to be properly considered. In this paper, a special non-linear macro-finite-element model that takes into account the effects of partial interaction is proposed. The RC beam and the steel plates are modelled as two different elements, interacting through discrete groups of bolts. A layered method is adopted for the formulation of the RC beam and steel plate elements, while a special non-linear model based on a kinematic hardening assumption for the bolts is used to simulate the bolt group effect. The computer program SiBAN was developed based on the proposed approach. Comparison with the available experimental results shows that SiBAN can accurately predict the partial interaction behaviour of the BSP beams. Further numerical simulations show that the interaction between the RC beam and the steel plates is greatly reduced by the formation of plastic hinges and should be considered in analyses of the strengthened beams.

Temperature Effect on Impedance-based Damage Monitoring of Steel-Bolt Connection using Wireless Impedance Sensor Node (무선 임피던스 센서노드를 이용한 강-볼트 접합부의 임피던스기반 손상모니터링에 미치는 온도 영향)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This paper presents the effect of temperature on the impedance-based damage monitoring of steel-bolt connections using wireless impedance sensor nodes. In order to achieve the objective, the following approaches are implemented. First, a temperature-compensated damage monitoring scheme that includes a temperature compensation model and damage detection method is described. The temperature compensation model is designed by analyzing the linear regressions between the temperatures and impedance signatures. The correlation coefficient of the impedance signatures is selected as the damage index to monitor the damage occurrence in the target structures. Second, a wireless impedance sensor node is described for the design of the hardware components and embedded software. Finally, the performance of the temperature-compensated impedance-based damage monitoring scheme is evaluated for detecting a loose bolt in the steel-bolt connections on a lab-scale steel girder under various temperatures.