• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.036 seconds

Development of Low-Velocity Impact Analysis Model of Carbon-Steel Laminates through Finite Element Analysis (유한요소해석을 통한 탄소섬유-연강 적층판의 저속 충격 해석 모델 개발)

  • Park, Byung-Jin;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.215-220
    • /
    • 2018
  • In this study, finite element analysis of Carbon-Steel Laminates with different layup pattern was conducted to verify similarity to the results of previous studies and to develop the effective model for low-velocity impact analysis. As in the experiment, Finite element analysis of the Fiber metal laminates (FMLs) with five different lamination patterns was carried out, and the impact resistance of the FMLs was confirmed by comparing the energy absorption ratio. The FMLs showed the higher energy absorption ratio than the mild steel having the same thickness, and it was confirmed that all the FMLs had the high energy absorption ratio over than 96%. In addition, the low-velocity impact analysis model proposed in this study can be effectively used to study composite forms and automotive structures.

Flexural performance of composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.525-545
    • /
    • 2020
  • This paper presents a new structural system to use as retaining walls. In civil works, there is a general trend to use traditional reinforced concrete (RC) retaining walls to resist soil pressure. Despite their good resistance, RC retaining walls have some disadvantages such as need for huge temporary formworks, high dense reinforcing, low construction speed, etc. In the present work, a composite wall with only one steel plate (steel-concrete) is proposed to address the disadvantages of the RC walls. In the proposed system, steel plate is utilized not only as tensile reinforcement but also as a permanent formwork for the concrete. In order to evaluate the efficiency of the proposed SC composite system, an experimental program that includes nine SC composite wall specimens is developed. In this experimental study, the effects of different parameters such as distance between shear connectors, length of shear connectors, concrete ultimate strength, use of compressive steel plate and compressive steel reinforcement are investigated. In addition, a 3D finite element (FE) model for SC composite walls is proposed using the finite element program ABAQUS and load-displacement curves from FE analyses were compared against results obtained from physical testing. In all cases, the proposed FE model is reasonably accurate to predict the behavior of SC composite walls under out-of-plane loads. Results from experimental work and numerical study show that the SC composite wall system has high strength and ductile behavior under flexural loads. Furthermore, the design equations based on ACI code for calculating out-ofplate flexural and shear strength of SC composite walls are presented and compared to experimental database.

Seismic behaviors of ring beams joints of steel tube-reinforced concrete column structure

  • Zhang, Yingying;Pei, Jianing;Huang, Yuan;Lei, Ke;Song, Jie;Zhang, Qilin
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.417-426
    • /
    • 2018
  • This paper presents the seismic behaviors and restoring force model of ring beam joints of steel tube-reinforced concrete column structure under cyclic loading. First, the main failure mode, ultimate bearing capacity, stiffness degradation and energy dissipation capacity are studied. Then, the effects of concrete grade, steel grade, reinforcement ratio and radius-to-width ratios are discussed. Finally, the restoring force model is proposed. Results show that the ring beam joints of steel tube-reinforced concrete column structure performs good seismic performances. With concrete grade increasing, the ultimate bearing capacity and energy dissipation capacity increase, while the stiffness degradation rates increases slightly. When the radius-width ratio is 2, with reinforcement ratio increasing, the ultimate bearing capacity decreases. However, when the radius-to-width ratios are 3, with reinforcement ratio increasing, the ultimate bearing capacity increases. With radius-to-width ratios increasing, the ultimate bearing capacity decreases slightly and the stiffness degradation rate increases, but the energy dissipation capacity increases slightly.

A Study on Seismic Performance of High-Strength Steel(POSTEN60, POSTEN80) Pipe-Section Piers using 3-Dimensional Elastic-Plastic Finite Deformation Analysis (3차원 탄소성 유한변위해석을 이용한 고강도(POSTEN60, POSTEN80) 원형강교각의 내진성능에 관한 연구)

  • Chang, Kyong-Ho;Jang, Gab-Chul;Kang, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.45-54
    • /
    • 2004
  • Recently, as steel structures become higher and more long-spanned, application of high-strength steels is increasing gradually. For seismic design of steel structures using high-strength steels(POSTEN60, POSTEN80), analytical method, can describe the large deformation and inelastic cyclic behavior generated by non-proportional cyclic loading, are required. In this paper, cyclic plasticity model was proposed by results of monotonic loading tests ant cyclic loading tests. Three-dimensional finite element analysis is developed by using proposed model and finite deformation theory and verified as compare with experiment result. Using 3-dimensional elastic-plastic finite deformation analysis, seismic analysis of high-strength steel pipe-section piers are carried out. Also, seismic performance of high-strength steel pipe-section piers in parameter of diameter-thickness ratio was clarified.

IFC-based Representation Method of Part Information in Superstructure Module of Modular Steel Bridge with Assembly System (모듈러 강교량 상부모듈의 조립체계 정의를 통한 IFC 기반의 부품정보 표현방법)

  • An, Hyun Jung;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.307-314
    • /
    • 2012
  • IFC-based representation method of part library for superstructure module of modular steel bridge is proposed. The library is capable of efficiently offering and exchanging part information in process of manufacture, assembly, design, and construction of modular steel bridge. Entities, representing physical part information in IFC model, are matched semantically with parts of the superstructure module for representation of part information with IFC model. Either types of matched entities are applied in order to verify the role of each part, or new types are defined as a user-defined types. In addition, assembly system has been classified and defined into 4 levels of LoD(Level of Detail) to provide appropriate part information efficiently from the part library in each step of the process. Then, new property is defined for representing the LoD information with IFC Model. Finally, IFC-based test library of modular steel bridge is generated by applying the matched entities and entity types to the actual the superstructure module of modular steel bridge.

Numerical Analysis of Inelastic Lateral Torsional Buckling Strength of HSB800 Steel Plate Girder with Monosymmetric Section (일축대칭단면 HSB800 강재 플레이트거더의 비탄성 횡비틂좌굴강도의 해석적 평가)

  • Park, Yong Myung;Lee, Kun Joon;Choi, Byung Ho;Hwang, Min O
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.153-164
    • /
    • 2013
  • In this paper, lateral-torsional buckling(LTB) strength of HSB800 high strength steel plate girder with monosymmetric section under uniform moment was evaluated by nonlinear analysis. The unbraced length in inelastic LTB range was considered for the sections whose smaller or larger flange is in compression with slender, noncompact and compact web. Analyses of SM490 steel girders were first performed with the single-panel and three-panel model to judge the validity of the constructed models by comparing those results with Eurocode 3, AASHTO and AISC codes. By using the same models, LTB strength of HSB800 girder was evaluated and it was found that the sections whose smaller flange is in compression with noncompact flange-slender/noncompact web could not reach the flexural strength of the design codes.

Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber

  • Karimi, Amirhossein;Nematzadeh, Mahdi;Mohammad-Ebrahimzadeh-Sepasgozar, Saleh
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.467-482
    • /
    • 2020
  • This research focused on analyzing the post-fire behavior of high-performance concrete-filled steel tube (CFST) columns, with the concrete containing tire rubber and steel fibers, under axial compressive loading. The finite element (FE) modeling of such heated columns containing recycled aggregate is a branch of this field which has not received the proper attention of researchers. Better understanding the post-fire behavior of these columns by measuring their residual strength and deformation is critical for achieving the minimum repair level required for structures damaged in the fire. Therefore, to develop this model, 19 groups of confined and unconfined specimens with the variables including the volume ratio of steel fibers, tire rubber content, diameter-to-thickness (D/t) ratio of the steel tube, and exposure temperature were considered. The ABAQUS software was employed to model the tested specimens so that the accurate behavior of the FE-modeled specimens could be examined under test conditions. To achieve desirable results for the modeling of the specimens, in addition to the novel procedure described in this research, the modified versions of models presented by previous researchers were also utilized. After the completion of modeling, the load-axial strain and load-lateral strain relationships, ultimate strength, and failure mode of the modeled CFST specimens were evaluated against the test data, through which the satisfactory accuracy of this modeling procedure was established. Afterward, using a parametric study, the effect of factors such as the concrete core strength at different temperatures and the D/t ratio on the behavior of the CFST columns was explored. Finally, the compressive strength values obtained from the FE model were compared with the corresponding values predicted by various codes, the results of which indicated that most codes were conservative in terms of these predictions.

Ratcheting behavior of pressurized Z2CND18.12N stainless steel pipe under different control modes

  • Chen, Xiaohui;Chen, Xu;Chen, Gang;Li, Duomin
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.29-50
    • /
    • 2015
  • With a quasi-three point bending apparatus, ratcheting deformation is studied experimentally on a pressurized austenitic stainless steel Z2CND18.12N pipe under bending load and vertical displacement control, respectively. The characteristic of ratcheting behavior of straight pipe under both control methods is achieved and compared. The cyclic bending loading and internal pressure influence ratcheting behavior of pressurized straight pipe significantly under loading control and the ratcheting characteristics are also highly associated with the cyclic displacement and internal pressure under displacement control. They all affect not only the saturation of the ratcheting strain but the ratcheting strain rate. In addition, ratcheting simulation is performed by elastic-plastic finite element analysis with ANSYS in which the bilinear model, Chaboche model, Ohno-Wang model and modified Ohno-Wang model are applied. By comparison with the experimental data, it is found that the CJK model gives reasonable simulation. Ratcheting boundaries under two control modes are almost same.

Nonlinear Hysteretic Behavior of Hybrid Steel Beams with Reinforced Concrete Ends (단부 철근콘크리트 중앙부 철골조로 이루어진 혼합구조부의 비선형 이력거동)

  • 이은진;김욱종;문정호;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.379-387
    • /
    • 2002
  • This paper presents an analytical model on nonlinear hysteretic behavior of hybrid steel beam with reinforced concrete ends. The modeling method and appropriate coefficients with IDARC2D were proposed from the comparison with previous test results. Since the polygonal model of IDARC2D nay overestimate, new analytical model with the initial stiffness reduction coefficient was proposed. The hysteretic coefficients for the analysis of the hybrid steel beam with reinforced concrete ends were also presented. The analytical results were compared with previous experiments. The initial stiffness and the strength were predicted with less than 5% error and 10% error, respectively.

Significance of seabed interaction on fatigue assessment of steel catenary risers in the touchdown zone

  • Elosta, Hany;Huang, Shan;Incecik, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.403-423
    • /
    • 2016
  • The challenges involved with fatigue damage assessment of steel catenary riser (SCR) in the touchdown zone (TDZ) are primarily due to the non-linear behaviour of the SCR-seabed interaction, considerable uncertainty in SCR-seabed interaction modelling and geotechnical parameters. The issue of fatigue damage induced by the cyclic movements of the SCR with the seabed has acquired prominence with the touch down point (TDP) interaction in the TDZ. Therefore, the SCR-seabed response is critical for reliable estimation of fatigue life in the TDZ. Various design approaches pertaining to the lateral pipe-soil resistance model are discussed. These techniques have been applied in the finite element model that can be used to analyse the lateral SCR-seabed interaction under hydrodynamic loading. This study investigates the sensitivity of fatigue performance to geotechnical parameters through a parametric study. In this study, global analyses are performed to assess the influence of vertical linear seabed springs, the lateral seabed model and the non-linear seabed model, including trench evolution into seabed, seabed normalised stiffness, re-penetration offset parameter and soil suction resistance ratio, on the fatigue life of SCRs in the TDZ.