• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.036 seconds

Thermal Distribution in Living Tissue during Warm Needling Therapy (온침 시술 시 생체 조직 내 열분포 분석에 관한 연구)

  • Kim, Jongyeon;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.3
    • /
    • pp.111-119
    • /
    • 2014
  • Objectives This study aims to analyze a thermal distribution in biological living tissue during warm needling therapy by using a finite element method. The analysis provides an understanding of warm needling's efficacy and safety. Methods A model which consisted of four-layered tissue and stainless steel needle was adopted to analyze the thermal distribution in living tissue with a bioheat transfer analysis. The governing equation for the analysis was a Pennes' bioheat equation. A heat source characteristic of warm needling therapy was obtained by previous experimental measurements. The first analysis of the time-dependent temperature distribution was conducted through points on a boundary between the needle and the tissue. The second analysis was conducted to visualize the horizontal temperature distribution. Results When heat source's peak temperatures was above $500^{\circ}C$ and temperature rising rates were relatively slow, the peak temperature at skin surface exceeded a threshold of pain and tissue damage ($45^{\circ}C$), whereas when the peak temperature was around $400^{\circ}C$, the peak temperature at the skin surface was within a safe limit. In addition, the conduction of combustion energy from the moxa was limited to the skin layer around the needle. Conclusions The results suggest that the skin layer around the needle can be heated effectively by warm needling therapy, but it appears to have little effect at the deeper tissue. These findings enhance our understanding of the efficacy and the safety of the warm needling therapy.

A NUMERICAL STUDY ON THERMAL DESIGN OF A LARGE-AREA HOT PLATE FOR THERMAL NANOIMPRINT LITHOGRAPHY (나노임프린트 장비용 대면적 열판 열설계를 위한 수치 연구)

  • Park, G.J.;Lee, J.J.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.90-98
    • /
    • 2016
  • A numerical study is conducted on thermal performance of a large-area hot plate specially designed as a heating and cooling tool for thermal nanoimprint lithography process. The hot plate has a dimension of $240mm{\times}240mm{\times}20mm$, in which a series of cartridge heaters and cooling holes are installed. The material is stainless steel selected for enduring the high molding pressure. A numerical model based on the ANSYS Fluent is employed to predict the thermal behavior of the hot plate both in heating and cooling phases. The PID thermal control of the device is modeled by adding user defined functions. The results of numerical computation demonstrate that the use of cartridge heaters provides sufficient heat-up performance and the active liquid cooling in the cooling holes provides the required cool-down performance. However, a crucial technical issue is raised that the proposed design poses a large temperature non-uniformity in the steady heating phase and in the transient cooling phase. As a remedy, a new hot plate in which heat pipes are installed in the cooling holes is considered. The numerical results show that the installation of heat pipes could enhance the temperature uniformity both in the heating and cooling phases.

Measurement of Stress and Displacement Fields in Particle Assembly subjected to Shallow Foundation Loading via Photoelasticity Technique (광탄성 기법을 이용한 얕은 기초 하중을 받는 입상체의 응력 및 변위장 측정)

  • Byeon, Bo-Hyeon;Jung, Young-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1947-1955
    • /
    • 2013
  • The purpose of this paper is to present an photoelasticity technique for measuring the displacement and stress distribution in particle assembly subjected to shallow foundation loading. Photoelastic measurement technique was employed to visualize the force transmission of a particle assembly. A model assembly bounded by a steel frame was built by stacking bi-dimensional circular particles made of polycarbonate elastomer. Each particle was coated by a thin photoelastic sheet so that the force transmission represented by bright light stripes can be visualized. In a contacted particle, both magnitude and orientation of principal stress difference can also be measured via the photoelasticity technique. The different distributions of the contact stresses at the initial loading and near the failure were quantitatively compared. The photoelastic patterns and displacement fields observed in the pre-failure state disappears immediately after the buckling of confined force chains.

Numerical Investigation of Deformation of Thin-walled Tube Under Detonation of Combustible Gas Mixture (가연성 연소 가스의 데토네이션에 의한 얇은 관 변형 모델링)

  • Gwak, Mincheol;Lee, Younghun;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • We present the results of a multi-material numerical investigation of the propagation of a combustible gas mixture detonation in narrow metal tubes. We use an experimentally tuned one step Arrhenius chemical reaction and ideal gas equation of state (EOS) to describe stoichiometric $H_2-O_2$ and $C_2H_4-O_2$ detonations. The purely plastic deformations of copper and steel tubes are modeled using the Mie-Gruneisen EOS and Johnson-Cook strength model. To precisely track the interface motion between the detonating gas and the deforming wall, we use the hybrid particle level-sets within the ghost fluid framework. The calculated results are validated against the experimental data because the results explain the process of the generation and subsequent interaction of the expansion wave with the high-strain-rate deformation of the walls.

An Experimental Study on Effect of Temperature and Oxygen fraction of Intake Air on Fuel Consumption in Radiant Tube Burner (Radiant Tube 버너에 있어서 흡기 온도 및 산소분물이 연료 소모에 미치는 영향)

  • Kim Hyun-woo;Lee Kyung-Hwan;Roh Dong-Soon
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.73-81
    • /
    • 2005
  • An Experimental study was conducted to investigate the effective way for fuel consumption improvement in radiant tube burner heating system used in steel manufacturing process. To find effectiveness of increase of temperature and oxygen fraction of intake air on fuel consumption, the model radiant tube burner heating system with recuperator was designed to be able to adjust temperature and oxygen fraction of intake air, and was operated under various conditions with oxygen concentration in exhaust gas changed. The results show that burner chamber temperature was increased about $10\%$ of intake air temperature increase. so it was difficult to expect fuel consumption improvement. But only 1 or $2\%$ increase of oxygen fraction in intake air made a significant improvement in fuel consumption even though it made much NOx emissions also. Therefore, if NOx emissions is controlled under regulation with burner modification, it is expected that increase of oxygen fraction in Intake air is effective way to improve fuel consumption.

FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION ACCORDING TO THE METHOD OF RESTORATION AFTER ROOT CANAL THERAPY (상악 소구치 근관치료후 수복방법에 따른 응력 분포의 유한 요소 분석)

  • Lee, Chung-Sik;Lee, Jae-Young;Cho, Hyo-Sun
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.339-352
    • /
    • 1996
  • Many dentists have been taken an interest in restoration of severly damaged teeth after endodontic treatment and it is a true that there are lots of studies about it. In these days, although we have used Para-Post, pins, threaded steel post, cast gold post and core, and so on, as a method of restoration frequently, it has been in controversy with the effects of them on the teeth and surrounding periodontal tissue. In this study, we assume that the crown of the upper 1st premolar was severly damaged, and after the root canal therapy, two most common types of restoration were carried out ; 1) coronal-radicular amalgam restoration, 2) after setting up the Para-Post, restore with amalgam core and gold crown. After restoration, in order to present the concentration of stress at internal portion of the tooth and the surrounding periodontal tissue, we doveloped a 2-dimensional finite element model of labiopalatal section, then loaded forces from 2 long perpendicular to the lingual incline of buccal ridge an the middle point, parallel to the long direction axis of tooth at the fossa-were applied. The analyzed results were as follows : 1. Stress of the normal first premolar was concentrated on the most weakest anatomical structure, that is, cervical area, and no stress on the bifurcated area of the canal. 2. Crown restoration after root canal therapy causes large stress concentration on the bifurcated area of the canal. This stress concentration has larger value in case of lateral movement of mandible, and there are decrease in the stress concentration compared with natural tooth. 3. Coronal-radicular amalgam restoration method transports more stress to the tooth structure than restoration using Para-Post. 4. There are more stress concentration around Para-Post in the case of lateral movement, and we have more favo rable result when restored with Para-Post. 5. Generally, stress in the lateral movement is larger than stress in the perpendicular load.

  • PDF

Effect of Pile Driving Energy on Steel Pipe Pile Capacity in Sands (모래지반에서 말뚝의 항타에너지가 강관말뚝의 지지력에 미치는 영향)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.99-110
    • /
    • 2001
  • Open-ended pipe piles are often used for the foundations of both land and offshore structures because of their relatively low driving resistance. In this study, load tests were performed on model pipe piles installed in calibration chamber samples in order to investigate the effects of pile installation method on soil plugging and bearing capacity. Results of the test program showed that the incremental filling ratio (IFR), which is used to indicate the degree of soil plugging in open-ended piles, decreased (i) with increasing hammer weight for the same driving energy and (ii) with increasing hammer weight at the same fall height. The base and shaft resistance of the piles were observed to increase (i) with increasing hammer weight for the same driving energy and (ii) with increasing hammer weight at the given same fa11 height. The jacked pile was found to be have higher bearing capacity than an identical driven pile under similar conditions, mostly due to the more effective development of a soil plug in jacking than in driving.

  • PDF

Harmonics Analysis for Electric Arc Furnace According to the Operation Condition (전기 아크로 운전 상태에 따른 고조파 해석)

  • Kim, Jae-Chul;Park, Kyung-Ho;Park, Hyun-Teak;Moon, Jong-Fil;Im, Sang-Kug;Son, Hag-Sig
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.118-125
    • /
    • 2004
  • The use of electric arc furnace has been increasing as the steel consumption is increasing and the operation technique of electric arc furnace are developing. But as the use of electric arc furnace is increased, the furnace have produced the adverse effects of power quality: voltage and current harmonics, voltage and current imbalances, low power factor, and voltage flicker. One of the power quality problems, the harmonic have the characteristics of the time-varying and non-linear. This paper analyzed the harmonics for the various operation conditions of electric arc furnace. The power system model with electric arc furnace have been made, and the harmonic's effects on the power system has been analyzed according to the various operating conditions, first melting, second melting, so on. Also, the filter reducing the harmonic components have been designed and its effects on the power system have been examined.

A Study on the Reduction Mechanism of Tungsten and Copper Oxide Composite Powders (W-Cu산화물 복합분말의 환원 기구에 관한 연구)

  • Lee, Seong;Hong, Moon-Hee;Kim, Eun-Pyo;Lee, Sung-Ho;Noh, Joon-Woong
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.422-429
    • /
    • 2003
  • The reduction mechanism of the composite powders mixed with $WO_3$ and CuO has been studied by using thermogravimetry (TG), X-ray diffraction, and microstructure analyses. The composite powders were made by simple Turbula mixing, spray drying, and ball-milling in a stainless steel jar with the ball to powder ratio of 32 to 1 at 80 rpm for 1 h without process controlling agents. It is observed that all the oxide composite powders are converted to W-coated Cu composite powder after reducing treatment under hydrogen atmosphere. For the formation mechanism of W-coated Cu composite powder, the sequential reduction steps are proposed as follows: CuO contained in the ball-milled composite powder is initially reduced to Cu at the temperature range from 20$0^{\circ}C$ to 30$0^{\circ}C$. Then, $WO_3$ powder is reduced to W $O_2$ via W $O_{2.9}$ and W $O_{2.72}$ at higher temperature region. Finally, the gaseous phase of $WO_3(OH)_2$ formed by reaction of $WO_2$ with water vapour migrates to previously reduced Cu and deposits on it as W reduced by hydrogen. The proposed mechanism has been proved through the model experiment which was performed by using Cu plate and $WO_3$ powder.

Direct displacement based seismic design for single storey steel concentrically braced frames

  • Salawdeh, Suhaib;Goggins, Jamie
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1125-1141
    • /
    • 2016
  • The direct displacement based design (DDBD) approach is spreading in the field of seismic design for many types of structures. This paper is carried out to present a robust approach for the DDBD procedure for single degree of freedom (SDOF) concentrically braced frames (CBFs). Special attention is paid to the choice of an equivalent viscous damping (EVD) model that represents the behaviour of a series of full scale shake table tests. The performance of the DDBD methodology of the CBFs is verified by two ways. Firstly, by comparing the DDBD results with a series of full-scale shake table tests. Secondly, by comparing the DDBD results with a quantified nonlinear time history analysis (NLTHA). It is found that the DDBD works relatively well and could predict the base shear forces ($F_b$) and the required brace cross sectional sizes of the actual values obtained from shake table tests and NLTHA. In other words, when comparing the ratio of $F_b$ estimated from the DDBD to the measured values in shake table tests, the mean and coefficient of variation ($C_V$) are found to be 1.09 and 0.12, respectively. Moreover, the mean and $C_V$ of the ratios of $F_b$ estimated from the DDBD to the values obtained from NLTHA are found to be 1.03 and 0.12, respectively. Thus, the DDBD methodology presented in this paper has been shown to give accurate and reliable results.